当前位置:初中试题 > 数学试题 > 概率相关概念 > 若自然数使得三个数的加法运算“”产生进位现象,则称为“连加进位数”.例如,2不是“连加进位数”,因为不产生进位现象;4是“连加进位数”,因为产生进位现象;51是...
题目
题型:不详难度:来源:
若自然数使得三个数的加法运算“”产生进位现象,则称为“连加进位数”.例如,2不是“连加进位数”,因为不产生进位现象;4是“连加进位数”,因为产生进位现象;51是“连加进位数”,因为产生进位现象.如果从0,1,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是(   )。
A.0.91 B.0.90C.0.89D.0.88

答案
D
解析
考点:
专题:新定义.
分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.
二者的比值就是其发生的概率的大小.
解答:解:当n=0时,0+1=1,0+2=2,n+(n+1)+(n+2)=0+1+2=3,不是连加进位数;
当n=1时,1+1=2,1+2=3,n+(n+1)+(n+2)=1+2+3=6,不是连加进位数;
当n=2时,2+1=3,2+2=4,n+(n+1)+(n+2)=2+3+4=9,不是连加进位数;
当n=3时,3+1=4,3+2=5,n+(n+1)+(n+2)=3+4+5=12,是连加进位数;
当n=4时,4+1=5,4+2=6,n+(n+1)+(n+2)=4+5+6=15,是连加进位数;
故从0,1,2,…,9这10个自然数共有连加进位数10-3=7个,
由于10+11+12=33个位不进位,所以不算.
又因为13+14+15=42,个位进了一,所以也是进位.
按照规律,可知0,1,2,10,11,12,20,21,22,30,31,32不是,其他都是.
所以一共有88个数是连加进位数.概率为0.88.
故选D.
点评:本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.易错点的得到连加进位数的个数.
核心考点
试题【若自然数使得三个数的加法运算“”产生进位现象,则称为“连加进位数”.例如,2不是“连加进位数”,因为不产生进位现象;4是“连加进位数”,因为产生进位现象;51是】;主要考察你对概率相关概念等知识点的理解。[详细]
举一反三
一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验,实验数据如下表:

解答下列问题:
小题1:如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是          。
小题2:如果摸出的这两个小球上数字之和为9的概率是,那么的值可以取7吗?请用列表法或画树状图说明理由;如果的值不可以取7,请写出一个符合要求的值。
题型:不详难度:| 查看答案
小郭想给水店打电话,可电话号码中有一个数字记不清了,只记得887134●8,小郭随意拨了一个数码补上,恰好是水店电话号码的概率为(    )
A.         B.         C.          D.
题型:不详难度:| 查看答案
小红和小慧玩纸牌游戏.如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小慧从剩余的3张牌中也抽出一张.
小题1:请用树状图表示出两人抽牌可能出现的所有结果;
小题2:求抽出的两张牌都是偶数的概率.
 
题型:不详难度:| 查看答案
下列事件中,不可能事件是
A.掷一枚六个面分别刻有1~6数码的均匀正方体骰子,向上一面的点数是“5”
B.任意选择某个电视频道,正在播放动画片
C.肥皂泡会破碎
D.在平面内,度量一个三角形的内角度数,其和为360°

题型:不详难度:| 查看答案
(本题满分9分)一个不透明的口袋里装着红、黄、绿三种只有颜色不同的球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为.
小题1:(1)试求袋中绿球的个数;(4分)
小题2: (2)第1次从袋中任意摸出l球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率. (5分)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.