当前位置:初中试题 > 数学试题 > 轴对称 > 在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′...
题目
题型:不详难度:来源:
在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.
(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(2)当四边形ABCD是平行四边形时,如图2,已知AC=BD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.

答案
解:(1)AC′=BD′,∠AMB=α,
证明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,
∴OA=OC=OB=OD,
又∵OD=OD′,OC=OC′,
∴OB=OD′=OA=OC′,
∵∠D′OD=∠C′OC,
∴180°-∠D′OD=180°-∠C′OC,
∴∠BOD′=∠AOC′,
∴△BOD′≌△AOC′,
∴BD′=AC′,
∴∠OBD′=∠OAC′,
设BD与OA相交于点N,
∴∠BNO=∠ANM,
∴180°-∠OAC′-∠ANM=180°-∠OBD′-∠BNO,
即∠AMB=∠AOB=∠COD=α,
综上所述,BD′=AC′,∠AMB=α,
(2)AC′=kBD′,∠AMB=α,
证明:在平行四边形ABCD中,OB=OD,OA=OC,
又∵OD=OD′,OC=OC′,
∴OB:OA=OD′:C′,
∠D′OD=∠C′OC,
∴180°-∠D′OD=180°-∠C′OC,
∴∠BOD′=∠AOC′,
∴△BOD′∽△AOC′,
∴BD′:AC′=OB:OA=BD:AC,
∵AC=kBD,
∴AC′=kBD′,
∵△BOD′∽△AOC′,
设BD′与OA相交于点N,
∴∠BNO=∠ANM,
∴180°-∠OAC′-∠ANM=180°-∠OBD′-∠BNO,即∠AMB=∠AOB=α,
综上所述,AC′=kBD′,∠AMB=α,

(3)AC′=BD′成立,∠AMB=α不成立.
解析

核心考点
试题【在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′】;主要考察你对轴对称等知识点的理解。[详细]
举一反三
(2011•桂林)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为(  )
A.B.
C.D.

题型:不详难度:| 查看答案
(2011•毕节地区)下列交通标志中,是中心对称图形的是(  )
题型:不详难度:| 查看答案
如图,∠A=30°,∠C′=60°,△ABC 与△A’B’C’关于直线对称,则∠B=_________
题型:不详难度:| 查看答案
(11·台州)点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE
翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80º,则∠CGE
        
题型:不详难度:| 查看答案
(11·湖州)如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点
O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是
A.150°B.120°C.90°D.60°

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.