当前位置:初中试题 > 数学试题 > 轴对称 > (1)动手操作:如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为        。(2)观察发现:小...
题目
题型:不详难度:来源:
(1)动手操作:
如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为        

(2)观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.

(3)实践与运用:
将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小。
答案
(1)125°;(2)同意;(3)60°
解析

试题分析:(1)先根据矩形的性质结合三角形的内角和定理求得∠AEB的度数,再根据折叠的性质求得∠DEF的度数,然后根据平行线的性质求得∠EFC的度数,即可得到结果;
(2) 设AD与EF交于点G.由折叠的性质可得AD平分∠BAC,所以∠BAD=∠CAD.∠AGE=∠DGE=90°,即得∠AEF=∠AFE,从而可以证得结论;
(3)过N作NH⊥AD于H,设,根据折叠的性质及勾股定理可证得△MPF为等边三角形,则∠MFE=30°,∠MFN=60°,又MN=MF=,则△MNF为等边三角形,即可求得结果;
(1)因为∠ABE=20°,所以∠AEB=70°
由折叠知,∠DEF=55°
所以=∠EFC=125°;
(2)同意.  
设AD与EF交于点G.

由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.
由折叠知,∠AGE=∠DGE=90°,
所以∠AGE=∠AGF=90°,
所以∠AEF=∠AFE.所以AE=AF,
即△AEF为等腰三角形.
(3)过N作NH⊥AD于H


由折叠知, ① 

② 
 
∴△MPF为等边三角形
∴∠MFE=30°
∴∠MFN=60°,
又∵MN=MF=  
∴△MNF为等边三角形
∴∠MNF=60°.
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
核心考点
试题【(1)动手操作:如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为        。(2)观察发现:小】;主要考察你对轴对称等知识点的理解。[详细]
举一反三
如图,正方形网格中每个小正方形边长都是,每个小格的顶点叫格点,以格点为顶点的三角形叫做格点三角形.①求格点△的面积;②在网格图中画出△先向右平移个单位,再向上平移个单位后的△;③画出格点△绕点顺时针旋转90°后的△.
 
题型:不详难度:| 查看答案
下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是(    ). 
题型:不详难度:| 查看答案
边长为2的等边△ABC与等边△DEF互相重合,将△ABC沿直线L向左平移m个单位长度,将△DEF向右也平移m个单位长度,如图,当C、E是线段BF的三等分点时,m的值为__    
题型:不详难度:| 查看答案
如图,有三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线(   ).
A.户最长B.户最长C.户最长D.一样长

题型:不详难度:| 查看答案
如图是一块长方形的场地,长,宽,从两处入口的中路宽都为,两小路汇合处路宽为,其余部分种植草坪,则草坪面积为(    )
A.m2B.m2 C.m2 D.m2

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.