当前位置:初中试题 > 数学试题 > 轴对称 > 设点P是△ABC内任意一点.现给出如下结论:①过点P至少存在一条直线将△ABC分成周长相等的两部分;②过点P至少存在一条直线将△ABC分成面积相等的两部分;③过...
题目
题型:不详难度:来源:
设点P是△ABC内任意一点.现给出如下结论:
①过点P至少存在一条直线将△ABC分成周长相等的两部分;
②过点P至少存在一条直线将△ABC分成面积相等的两部分;
③过点P至多存在一条直线将△ABC分成面积相等的两部分;
④△ABC内存在点Q,过点Q有两条直线将其平分成面积相等的四个部分.
其中结论正确的是   .(写出所有正确结论的序号)
答案
①②④
解析

试题分析:结论①正确。理由如下:
如答图1所示,设点P为△ABC内部的任意一点,经过点P的直线l将△ABC分割后,两侧图形的周长分别为C1,C2(C1,C2中不含线段DE),
在直线l绕点P连续的旋转过程中,周长由C1<C2(或C1>C2)的情形,逐渐变为C1>C2(或C1<C2)的情形,在此过程中,一定存在C1=C2的时刻,因此经过点P至少存在一条直线平分△ABC的周长。故结论①正确。
结论②正确。理由如下:
如答图1所示,

设点P为△ABC内部的任意一点,经过点P的直线l将△ABC分割后,两侧图形的面积分别为S1,S2
在直线l绕点P连续的旋转过程中,面积由S1<S2(或S1>S2)的情形,逐渐变为S1>S2(或S1<S2)的情形,在此过程中,一定存在S1=S2的时刻,因此经过点P至少存在一条直线平分△ABC的面积。故结论②正确。
结论③错误。理由如下:
如答图2所示,

AD、BE、CF为三边的中线,则AD、BE、CF分别平分△ABC的面积,而三条中线交于重心G,则经过重心G至少有三条直线可以平分△ABC的面积。故结论③错误。
结论④正确。理由如下:
如答图3所示,

AD为△ABC的中线,点M、N分别在边AB、AC上,MN∥BC,且,MN与AD交于点Q。
∵MN∥BC,∴△AMN∽△ABC。
,即MN平分△ABC的面积。
又∵AD为中线,
∴过点Q的两条直线AD、MN将△ABC的面积四等分。故结论④正确。
综上所述,正确的结论是:①②④。 
核心考点
试题【设点P是△ABC内任意一点.现给出如下结论:①过点P至少存在一条直线将△ABC分成周长相等的两部分;②过点P至少存在一条直线将△ABC分成面积相等的两部分;③过】;主要考察你对轴对称等知识点的理解。[详细]
举一反三
如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是

A.45°        B.60°          C.90°         D.120°
题型:不详难度:| 查看答案
点P(2,﹣1)关于x轴对称的点P′的坐标是   
题型:不详难度:| 查看答案
(2013年四川广安3分)将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为   
题型:不详难度:| 查看答案
(2013年四川眉山3分)下列图形是中心对称图形的是【   】
A.B.C.D.

题型:不详难度:| 查看答案
(2013年四川绵阳3分)下列“数字”图形中,有且仅有一条对称轴的是【   】
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.