当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图,PA、PB是⊙O的切线,切点为A、B,C是⊙O上的一点,已知∠APB=76°,则∠ACB=______....
题目
题型:不详难度:来源:
如图,PA、PB是⊙O的切线,切点为A、B,C是⊙O上的一点,已知∠APB=76°,则∠ACB=______.
答案

连接OB、OA、
∵PA、PB是⊙O的切线,切点为A、B,
∴∠PBO=∠PAO=90°,
∵∠APB=76°,
∴∠AOB=360°-∠PBO-∠PAO-∠APB=104°,
∴由圆周角定理得:∠ACB=
1
2
∠AOB=
1
2
×104°=52°,
故答案为:52°.
核心考点
试题【如图,PA、PB是⊙O的切线,切点为A、B,C是⊙O上的一点,已知∠APB=76°,则∠ACB=______.】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
如图,△ABC中,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N,且BA•BM=BC•BN.
(1)求证:AC⊥BC;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=4时,求AB的值.
题型:不详难度:| 查看答案
如图,在Rt△ABC中,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作DF的垂线交DF的延长线于点E.
(1)试判断AE与⊙O的位置关系;
(2)若斜边BC=12,求AC•AF的值.
题型:不详难度:| 查看答案
如图,已知AB是⊙O的直径,P为AB延长线上的一点,PC是⊙O的切线,C为切点,∠A=35°,求∠P的度数.
题型:不详难度:| 查看答案
如图,从点P向⊙O引两条切线PA,PB,切点为A,B,BC为⊙O的直径,若∠P=60°,PA=3,则⊙O的直径BC的长为(  )
A.2


3
B.


3
3
C.3D.4


3

题型:不详难度:| 查看答案
如图,AC是⊙O的直径,AB与⊙O相切于点A,四边形ABCD是平行四边形,BC交⊙O于点E.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为5cm,弦CE的长为8cm,求AB的长.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.