当前位置:初中试题 > 数学试题 > 圆的认识 > 如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面...
题目
题型:不详难度:来源:
如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为(     )
A.4B.C.D.5

答案
D
解析

分析:首先求得弧AE的长,然后利用弧AE的长正好等于圆的底面周长,求得⊙O的半径,则BE的长加上半径即为AD的长.

解:∵AB=4,∠B=90°,
==2π,
设⊙O与AD、CD分别相切于F、G,
连接FO并延长交BC于E,则FE垂直于AD,OG垂直于CD,
可得矩形ABEF、矩形CDEH、矩形CGOE和正方形DFOG,
∴FE⊥BC,
∴OE=3,BE=4=BE,
∴点E与H重合,
又CE=OG=1,
∴AD=BC=BE+CE=5
故选D.
核心考点
试题【如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
(2011•广州)如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为(  )
A.B.
C.πD.

题型:不详难度:| 查看答案
(2011•广州)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.
(1)证明:B、C、E三点共线;
(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;
(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.
题型:不详难度:| 查看答案
(2011•恩施州)如图,直线AB、AD与⊙O相切于点B、D,C为⊙O上一点,且∠BCD=140°,则∠A的度数是(  )

A、70°          B、105°
C、100°         D、110°
题型:不详难度:| 查看答案
(2011•恩施州)如图,已知AB为⊙O的直径,BD为⊙O的切线,过点B的弦BC⊥OD交⊙O于点C,垂足为M.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=6cm时,求图中阴影部分的面积(结果不取近似值)
题型:不详难度:| 查看答案
如图,正方形的边长为2,分别以正方形的两个相对顶点为圆心,以正方形的一边为半径画弧,则阴影部分的面积是            
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.