当前位置:初中试题 > 数学试题 > 圆的认识 > 如图为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为...
题目
题型:不详难度:来源:
如图为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D = 56°,求:(1)弧AB的度数(参考数据:sin53°≈0.8,tan56°≈1.5)
(2)U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)

答案
(1)106°;(2)20m2
解析

试题分析:(1)连接AO、BO,过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F,则OF⊥AB.由OA =" OB" = 5m,AB = 8m,即可得到,∠AOB = 2∠AOF.在Rt△AOF中,根据∠AOF的正弦函数即可求得∠AOF 的度数,从而求得结果;
(2)先根据勾股定理求的OF,即可得到FN,再根据等腰梯形的性质可得AE =" FN" = 3m,DC =" AB" + 2DE.解Rt△ADE即可得到DE = 2m,DC = 12m,根据即可求得结果.
(1)连接AO、BO,过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F,则OF⊥AB.

∵OA =" OB" = 5m,AB = 8m,
,∠AOB = 2∠AOF.
在Rt△AOF中,sin∠AOF ==" 0.8" = sin53°.
∴∠AOF = 53°,则∠AOB = 106°.即弧AB度数为106°;
(2)∵,由题意得MN = 1m,
.      
∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB,
∴AE =" FN" = 3m,DC =" AB" + 2DE.
在Rt△ADE中,
∴DE = 2m,DC = 12m.  

答:U型槽的横截面积约为20m2.       
点评:根据题意作出辅助线,构造出直角三角形及等腰梯形,再利用勾股定理进行求解是解此题的关键.
核心考点
试题【如图为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形圆心角是(   )
A.1200B.1800C.2400D.3000

题型:不详难度:| 查看答案
已知⊙O的半径为5cm,圆内两平行弦AB、CD的长分别为6cm、8cm,则弦AB、CD间的距离为(   )
A.1cm        B.7cm       C.4cm或3cm      D.7cm或1cm
题型:不详难度:| 查看答案
已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,
∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为(  )
A.45°B.40°C.50°D.65°

题型:不详难度:| 查看答案
如图,当半径为30cm的转动轮转过120°角时,转动带上的物体A平移的距离为_________cm(物体A不打滑).
题型:不详难度:| 查看答案
如图,点A、B、C在⊙O上,AO∥BC,∠AOB = 50°. 则∠OAC的度数是         . 
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.