当前位置:初中试题 > 数学试题 > 圆的认识 > 如图,在Rt△ABC中,已知∠ACB=90°,AC=1,BC=3,将△ABC绕着点A按逆时针方向旋转30°,使得点B与点B′重合,点C与点C′重合,则图中阴影部...
题目
题型:不详难度:来源:
如图,在Rt△ABC中,已知∠ACB=90°,AC=1,BC=3,将△ABC绕着点A按逆时针方向旋转30°,使得点B与点B′重合,点C与点C′重合,则图中阴影部分的面积为         

答案

解析

试题分析:先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABB′,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=SAC′B′+S扇形ABB′﹣SABC=S扇形ABB′,求出即可.
解:如图,∵∠ACB=90°,AC=1,BC=3,
∴AB==
∴S扇形ABB′==
又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,
∴S阴影部分=SAC′B′+S扇形ABB′﹣SABC=S扇形ABB′=
核心考点
试题【如图,在Rt△ABC中,已知∠ACB=90°,AC=1,BC=3,将△ABC绕着点A按逆时针方向旋转30°,使得点B与点B′重合,点C与点C′重合,则图中阴影部】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
如图所示:下列正多边形都满足,在正三角形中,我们可推得:;在正方形中,可推得:;在正五边形中,可推得:,依此类推在正八边形中,      ,在正边形中,      .

题型:不详难度:| 查看答案
已知:如图,⊙的直径与弦(不是直径)交于点,若=2,,求的长.
 
题型:不详难度:| 查看答案
已知:如图,是⊙的直径,是⊙外一点,过点的垂线,交的延长线于点,的延长线与⊙交于点

(1)求证:是⊙的切线;
(2)若,⊙的半径为,求的长.
题型:不详难度:| 查看答案
如图,在△ABC中,,以点C为圆心,为半径的圆交AB于点D,交AC于点E,则的度数为(     )
A.B.C.D.

题型:不详难度:| 查看答案
如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为      .

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.