当前位置:初中试题 > 数学试题 > 圆的认识 > 如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD...
题目
题型:不详难度:来源:
如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.
(1)求证:AC是⊙O的切线;
(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.

答案
(1)证明见解析;(2).
解析

试题分析:(1)证明△ADC∽△BAC,可得∠BAC=∠ADC=90°,继而可判断AC是⊙O的切线.
(2)根据(1)所得△ADC∽△BAC,可得出CA的长度,继而判断∠CFA=∠CAF,利用等腰三角形的性质得出AF的长度,继而得出DF的长,在Rt△AFD中利用勾股定理可得出AF的长.
(1)∵AB是⊙O的直径,
∴∠ADB=∠ADC=90°,
∵∠B=∠CAD,∠C=∠C,
∴△ADC∽△BAC,
∴∠BAC=∠ADC=90°,
∴BA⊥AC,
∴AC是⊙O的切线.
(2)∵BD=5,CD=4,
∴BC=9,
∵△ADC∽△BAC(已证),
,即AC2=BC×CD=36,
解得:AC=6,
在Rt△ACD中,AD=
∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,
∴CA=CF=6,
∴DF=CA-CD=2,
在Rt△AFD中,AF=
核心考点
试题【如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是(  )。
A.25°B.30°C.40°D.50°

题型:不详难度:| 查看答案
如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为           。

题型:不详难度:| 查看答案
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△.
(1)画出△,直接写出点的坐标;
(2)在旋转过程中,点B经过的路径的长;
(3)求在旋转过程中,线段AB所扫过的面积.

题型:不详难度:| 查看答案
已知两圆的半径R、r分别为方程x2-5x+6=0的两根,两圆的圆心距为1,两圆的位置关系是(  )
A.外离B.内切C.相交D.外切

题型:不详难度:| 查看答案
下列四个命题:①与圆有公共点的直线是该圆的切线;②到圆心的距离等于该圆半径的直线是该圆的切线;③垂直于圆的半径的直线是该圆的切线;④过圆直径的端点,垂直于此直径的直线是该圆的切线.其中正确的是(  )
A.①②B.①④ C.②④ D.③④

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.