如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )A.42.8m | B.42.80m | C.42.9m | D.42.90m |
|
Rt△ABO中,OA=20,∠BAO=65°, ∴OB=OA?tan65°≈42.9(米). 故选C. |
核心考点
试题【如图,为测量一幢大楼的高度,在地面上距离楼底O点20m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为(结果保留3个有效数字)( )A.42.】;主要考察你对
解三角形等知识点的理解。
[详细]
举一反三
一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD.已知她的眼睛与地面的距离为1.6米,小迪在B处测量时,测角器中的∠AOP=60°(量角器零度线AC和铅垂线OP的夹角,如图);然后她向小山走50米到达点F处(点B,F,D在同一直线上),这时测角器中的∠EO′P′=45°,那么小山的高度CD约为( )(注:数据≈1.732,≈1.414供计算时选用)
|
如图,为了测量河的宽度,王芳同学在河岸边相距200m的M和N两点分别测定对岸一棵树P的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是( ) |
如图,在△ABC中,∠C=90°,AB=10cm,sinA=,则BC的长为______cm. |
如图,飞机A在目标B的正上方,在地面C处测得飞机的仰角为α,在飞机上测得地面C处的俯角为β,飞行高度为h,AC间距离为s,从这4个已知量中任取2个为一组,共有6组,那么可以求出BC间距离的有( ) |
如图,为了确定一条小河的宽度BC,可在点C左侧的岸边选择一点A,使得AC⊥BC,若测得AC=a,∠CAB=θ,则BC=( )A.asinθ | B.acosθ | C.atanθ | D.acotθ |
|