当前位置:初中试题 > 数学试题 > 解三角形 > 如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的...
题目
题型:不详难度:来源:
如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.

答案
(1)证明:连接OA。

∵∠B=60°,∴∠AOC=2∠B=120°。
又∵OA=OC,∴∠ACP=∠CAO=30°。∴∠AOP=60°。
∵AP=AC,∴∠P=∠ACP=30°。∴∠OAP=90°。∴OA⊥AP。
∴AP是⊙O的切线。
(2)解:连接AD。
∵CD是⊙O的直径,∴∠CAD=90°。∴AD=AC•tan30°=3×
∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°。
∴∠P=∠PAD。∴PD=AD=
解析
(1)连接OA,由∠B=60°,利用圆周角定理,即可求得∠AOC的度数,又由OA=OC,即可求得∠OAC与∠OCA的度数,利用三角形外角的性质,求得∠AOP的度数,又由AP=AC,利用等边对等角,求得∠P,则可求得∠PAO=90°,则可证得AP是⊙O的切线。
(2)由CD是⊙O的直径,即可得∠DAC=90°,然后利用三角函数与等腰三角形的判定定理,即可求得PD的长。
核心考点
试题【如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的】;主要考察你对解三角形等知识点的理解。[详细]
举一反三
如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,点D在AC上,将△ADB沿直线BD翻折后,将点A落在点E处,如果AD⊥ED,那么线段DE的长为        
题型:不详难度:| 查看答案
如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为【   】
A.B.C.D.1

题型:不详难度:| 查看答案
计算:
题型:不详难度:| 查看答案
计算:2sin60°+|-3|-
题型:不详难度:| 查看答案

在△ABC中,∠ABC=45°,tan∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E.

(1)求AC所在直线的函数解析式;
(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;
(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.