当前位置:初中试题 > 数学试题 > 解三角形 > 如图,一货轮在海上由西往东行驶,从A、B两个小岛中间穿过.当货轮行驶到点P处时,测得小岛A在正北方向,小岛B位于南偏东24.5°方向;货轮继续前行12海里,到达...
题目
题型:不详难度:来源:
如图,一货轮在海上由西往东行驶,从A、B两个小岛中间穿过.当货轮行驶到点P处时,测得小岛A在正北方向,小岛B位于南偏东24.5°方向;货轮继续前行12海里,到达点Q处,又测得小岛A位于北偏西49°方向,小岛B位于南偏西41°方向.
(1)线段BQ与PQ是否相等?请说明理由;
(2)求A,B间的距离.(参考数据cos41°≈0.75)

答案
(1)相等,理由见解析;(2)20海里.
解析

试题分析:(1)分别求出∠QPB和∠QBP的度数,可得∠BPQ=∠PBQ,即可得出PQ=BQ;
(2)在Rt△APQ中,根据PQ的长度和∠AQP,利用三角函数求出AQ的长度,然后根据已知角的度数得出∠AQB=90°,在Rt△AQB中,解直角三角形,即可求得AB的长度.
(1)线段BQ与PQ相等.
证明如下:∵∠PQB=90°-41°=49°,
∴∠BPQ=90°-24.5°=65.5°,
∠PBQ=180°-49°-65.5°=65.5°,
∴∠BPQ=∠PBQ,
∴BQ=PQ;
(2)在Rt△APQ中,
∵∠PQA=90°-49°=41°,
∴AQ=(海里),
又∵∠AQB=180°-49°-41°=90°,
∴△ABQ是直角三角形,
∵BQ=PQ=12海里,
∴AB2=AQ2+BQ2=162+122
∴AB=20(海里),
答:A、B的距离为20海里.
核心考点
试题【如图,一货轮在海上由西往东行驶,从A、B两个小岛中间穿过.当货轮行驶到点P处时,测得小岛A在正北方向,小岛B位于南偏东24.5°方向;货轮继续前行12海里,到达】;主要考察你对解三角形等知识点的理解。[详细]
举一反三
如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE.(结果保留两个有效数字)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70, Sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

题型:不详难度:| 查看答案
河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是(  )
A.5B.10米C.15米D.10

题型:不详难度:| 查看答案
如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?

题型:不详难度:| 查看答案
如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).

题型:不详难度:| 查看答案
如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.
(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.