当前位置:初中试题 > 数学试题 > 解三角形 > 如图,从A地到B地的公路需要经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°。因城市规划的需要,将在A,B两地之间修建一条笔直的公路。(1)求改...
题目
题型:不详难度:来源:
如图,从A地到B地的公路需要经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°。因城市规划的需要,将在A,B两地之间修建一条笔直的公路。
(1)求改直后的公路AB的长;
(2)问:公路改造后比原来缩短了多少千米?
(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

答案
(1)AB= 14.7(千米)(2)改直后的路程缩短了2.3千米
解析

试题分析:(1)作CH⊥AB于点H,利用三角函数即可得
(2)利用三角函数求得BC,然后AC+BC-AB就可以了
试题解析:解:(1)作CH⊥AB于点H,在Rt△ACH中,

CH=ACsin∠CAB=ACsin25°=10×0.42=4.2
AH=ACcos∠CAB=ACcos25°=10×0.91=9.1
在Rt△B CH中,
BH=CH÷tan37°=42÷0.75=5.6
∴AB=AH+BH=9.1+5.6=14.7(千米)
(2)BC=CH÷sin37°=4.2÷0.60=7.0
∴AC+BC-AB=10+7-14.7=2.3(千米)
答:改直后的路程缩短了2.3千米。
核心考点
试题【如图,从A地到B地的公路需要经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°。因城市规划的需要,将在A,B两地之间修建一条笔直的公路。(1)求改】;主要考察你对解三角形等知识点的理解。[详细]
举一反三
如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)

题型:不详难度:| 查看答案
数学活动﹣求重叠部分的面积

(1)问题情境:如图①,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P与等边△ABC的内心O重合,已知OA=2,则图中重叠部分△PAB的面积为      
(2)探究1:在(1)的条件下,将纸片绕P点旋转至如图②所示位置,纸片两边分别与AC,AB交于点E,F,图②中重叠部分的面积与图①重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.
(3)探究2:如图③,若∠CAB=α(0°<α<90°),AD为∠CAB的角平分线,点P在射线AD上,且AP=2,以P为顶点的等腰三角形纸片(纸片足够大)与∠CAB的两边AC,AB分别交于点E、F,∠EPF=180°﹣α,求重叠部分的面积.(用α或的三角函数值表示)
题型:不详难度:| 查看答案
如图,已知测速站P到公路L的距离PO为40米,一辆汽车在公路L上行驶,测得此车从点A行驶到点B所用的时间为2秒,并测得∠APO=60°,∠BPO=30°,计算此车从A到B的平均速度为每秒多少米(结果保留四个有效字),并判断此车是否超过了每秒22米的限制速度?
题型:不详难度:| 查看答案
如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.
(1)求证:△AEC≌△DEB;
(2)若∠ABC=∠DCB=90°,AB=2cm,求图中阴影部分的面积.
题型:不详难度:| 查看答案
如图,某货船以20海里/小时的速度将一批重要的物资由A处运往正西方向的B处,经16小时的航行到达,到达后便接到气象部门通知,一台风中心正由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.在B处的货船是否会受到台风的侵袭?说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.