当前位置:初中试题 > 数学试题 > 相似三角形的判定 > 如图,在△ABC中,AB=AC=10cm,BC=12cm,点D是BC边的中点.点P从点B出发,以acm/s(a>0)的速度沿BA匀速向点A运动;点Q同时以1cm...
题目
题型:江苏中考真题难度:来源:
如图,在△ABC中,AB=AC=10cm,BC=12cm,点D是BC边的中点.点P从点B出发,以acm/s(a>0)的速度沿BA匀速向点A运动;点Q同时以1cm/s的速度从点D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为ts.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)设点M在AC上,四边形PQCM为平行四边形.①若a=,求PQ的长;②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明理由.
答案
解:(1)△ABC中,AB=AC=10cm,BC=12cm,D是BC的中点,
∴BD=CD= BC=6cm,
∵a=2,
∴BP=2tcm,DQ=tcm,
∴BQ=BD-QD=6-t(cm),
∵△BPQ∽△BDA,
∴BP:BD =BQ: AB ,
= ,解得:t=
(2)①过点P作PE⊥BC于E,
∵四边形PQCM为平行四边形,
∴PM∥CQ,PQ∥CM,PQ=CM
∴PB:AB=CM:AC,
∵AB=AC,
∴PB=CM,
∴PB=PQ,
∴BE=BQ= (6-t)cm,
∵a=
∴PB=5 2 tcm,
∵AD⊥BC,
∴PE∥AD,
∴PB:AB=BE:BD,
t:10 = (6-t) :6 ,
解得:t=
∴PQ=PB= t= (cm);
②不存在.理由如下:
∵四边形PQCM为平行四边形,
∴PM∥CQ,PQ∥CM,PQ=CM,
∴PB:AB=CM:AC,
∵AB=AC,∴PB=CM,
∴PB=PQ. 若点P在∠ACB的平分线上,则∠PCQ=∠PCM,
∵PM∥CQ,
∴∠PCQ=∠CPM,
∴∠CPM=∠PCM,
∴PM=CM,
∴四边形PQCM是菱形,
∴PQ=CQ∴PB=CQ,
∵PB=atcm,CQ=BD+QD=6+t(cm),
∴PM=CQ=6+t(cm),AP=AB-PB=10-at(cm),
即at=6+t①, ∵PM∥CQ,
∴PM:BC=AP:AB,
=
化简得:6at+5t=30②,
把①代入②得,t=-
∴不存在实数a,使得点P在∠ACB的平分线上.
核心考点
试题【如图,在△ABC中,AB=AC=10cm,BC=12cm,点D是BC边的中点.点P从点B出发,以acm/s(a>0)的速度沿BA匀速向点A运动;点Q同时以1cm】;主要考察你对相似三角形的判定等知识点的理解。[详细]
举一反三
如图,锐角三角形ABC的边AB,AC上的高线CE和BF相交于点D,请写出图中的两对相似三角形:(         )(用相似符号连接).
题型:山东省中考真题难度:| 查看答案
在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCDE的面积为5,那么AB的长为(        ).
题型:上海中考真题难度:| 查看答案
如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为C,BG交AE于点H.
(1)求证:△ABE∽△ECF;
(2)找出与△ABH相似的三角形,并证明;
(3)若E是BC中点,BC=2AB,AB=2,求EM的长.
题型:山东省中考真题难度:| 查看答案
如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB。AD的中点,则△AEF与多边形BCDFE的面积之比为
[     ]
A.
B.
C.
D.
题型:四川省中考真题难度:| 查看答案
如图,AC是⊙O的直径,弦BD交AC于点E.
(1)求证:△ADE∽△BCE;
(2)如果AD2=AE·AC,求证:CD=CB.
题型:广东省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.