当前位置:初中试题 > 数学试题 > 相似三角形的判定 > 如图,在直角梯形ABCD中,AD∥BC,∠ABC=90 °.点E为底AD上一点,将△ABE沿直线BE折叠,点A落在梯形对角线BD上的G处,EG的延长线交直线BC...
题目
题型:湖北省中考真题难度:来源:
如图,在直角梯形ABCD中,AD∥BC,∠ABC=90 °.点E为底AD上一点,将△ABE沿直线BE折叠,点A落在梯形对角线BD上的G处,EG的延长线交直线BC于点F.
(1)点E可以是AD的中点吗?为什么?
(2)求证:△ABG∽△BFE;
(3)设AD=a,AB=b,BC=c   
①当四边形EFCD为平行四边形时,求a,b,c应满足的关系;    
②在①的条件下,当b=2时,a的值是唯一的,求∠C的度数.
答案
解:(1)不可以。理由如下:
根据题意得:AE=GE,∠EGB=∠EAB=90 °,
∴Rt△EGD中,GE<ED。
∴AE<ED。
∴点E不可以是AD的中点。
(2)证明:∵AD∥BC,
∴∠AEB=∠EBF,
∵由折叠知△EAB≌△EGB,
∴∠AEB=∠BEG。
∴∠EBF=∠BEF。
∴FE=FB,
∴△FEB为等腰三角形。
∵∠ABG+∠GBF=90 °,∠GBF+∠EFB=90 °,
∴∠ABG=∠EFB。
在等腰△ABG和△FEB中,
∠BAG=(180 °﹣∠ABG)÷2,∠FBE=(180 °﹣∠EFB)÷2,
∴∠BAG=∠FBE。
∴△ABG∽△BFE。
(3)①∵四边形EFCD为平行四边形,
∴EF∥DC。    
∵由折叠知,∠DAB=∠EGB=90°,
∴∠DAB=∠BDC=90°。    
又∵AD∥BC,
∴∠ADB=∠DBC。
∴△ABD∽△DCB。

∵AD=a,AB=b,BC=c,
∴BD=

即a2+b2=ac。
②由①和b=2得关于a的一元二次方程a2﹣ac+4=0,
由题意,a的值是唯一的,即方程有两相等的实数根,
∴△=0,即c2﹣16=0。
∵c>0,
∴c=4。
∴由a2﹣4a+4=0,得a=2。
由①△ABD∽△DCB和a= b=2,
得△ABD和△DCB都是等腰直角三角形,
∴∠C=45 °。
核心考点
试题【如图,在直角梯形ABCD中,AD∥BC,∠ABC=90 °.点E为底AD上一点,将△ABE沿直线BE折叠,点A落在梯形对角线BD上的G处,EG的延长线交直线BC】;主要考察你对相似三角形的判定等知识点的理解。[详细]
举一反三

如图,三角形ABC的两个顶点B、C在圆上,顶点A在圆外,AB、AC分别交圆于E、D两点,连结EC、BD.
(1)求证:△ABD∽△ACE;
(2)若△BEC与△BDC的面积相等,试判定三角形ABC的形状.



题型:山东省中考真题难度:| 查看答案
如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC。图中相似三角形共有
[     ]
A.1对    
B.2对    
C.3对    
D.4对
题型:江苏中考真题难度:| 查看答案
如图,在平面直角坐标系中,已知Rt △AOB 的两条直角边OA 、OB 分别在y 轴和x 轴上,并且OA 、OB 的长分别是方程x2-7x +12=0 的两根(OA <OB ),动点P 从点A 开始在线段AO 上以每秒1 个单位长度的速度向点O 运动;同时,动点Q 从点B 开始在线段BA 上以每秒2 个单位长度的速度向点A 运动,设点P 、Q 运动的时间为t 秒.
(1 )求A 、B 两点的坐标. (2 )求当t 为何值时,△APQ 与△AOB 相似,并直接写出此时点Q 的坐标.
(3 )当t=2 时,在坐标平面内,是否存在点M ,使以A 、P 、Q 、M 为顶点的四边形是平行四边形?若存在,请直接写出M 点的坐标;若不存在,请说明理由.
题型:黑龙江省中考真题难度:| 查看答案
如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
题型:湖北省中考真题难度:| 查看答案
如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件(     )
题型:湖南省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.