当前位置:初中试题 > 数学试题 > 相似图形性质 > 如图所示:∠ABC的平分线BF与△ABC中∠ACB的相邻外角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E.问:(1)图中有几个等腰三角形?...
题目
题型:不详难度:来源:
如图所示:∠ABC的平分线BF与△ABC中∠ACB的相邻外角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E.
问:(1)图中有几个等腰三角形?为什么?
(2)BD,CE,DE之间存在着什么关系?请证明.

答案
(1)图中等腰三角形有△BDF,△CEF。         2′
∵BF平分∠ABC,∴∠DBF=∠CBF,∵DF∥BC,∠FBC=∠DFB,
∴∠DBF=∠DFB,∴△DBF是等腰三角形;         4′
    6′
              8′
解析
(1)根据已知条件,BF、CF分别平分∠ABC、∠ACB的外角,且DE∥BC,可得∴∠DBF=∠DFB,∠ECF=∠EFC,因此可判断出△BDF和△CEF为等腰三角形;
(2)由(1)可得出DF=BD,CE=EF,所以得BD-CE=DE.
核心考点
试题【如图所示:∠ABC的平分线BF与△ABC中∠ACB的相邻外角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E.问:(1)图中有几个等腰三角形?】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
利用“等积”计算或说理是一种很巧妙的方法, 就是一个面积从两个不同的角度表示。如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的长。
解题思路:利用勾股定理易得AB=5利用
,可得到CD=2.4
请你利用上述方法解答下面问题:
(1)  如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的长。

(2)如图乙,△ABC是边长为2的等边三角形,点D是BC边上的
任意一点,DE⊥AB于E点,DF⊥AC于F点,求DE+DF的值
题型:不详难度:| 查看答案
如图,已知在等腰直角三角形中,平分,与相交于点,延长,使
(1)求证:

(2)延长,且,求证:

(3)在⑵的条件下,若边的中点,连结相交于点
试探索,之间的数量关系,并证明你的结论.
题型:不详难度:| 查看答案
若等腰三角形的底角为72°,则顶角为(    )
A.108°B.72°C.54°D.36°

题型:不详难度:| 查看答案
如图,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,
求证:CE=CF。
题型:不详难度:| 查看答案
若将一张等腰三角形纸片沿两腰中点连线剪开,拼成一个新图形,这个新图形可以是下列图形中的( )
A.平行四边形B.等腰梯形C.矩形D.正方形

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.