当前位置:初中试题 > 数学试题 > 相似图形性质 > 如图(1),A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF,若将△DEC的边EC沿AC方向移动变...
题目
题型:不详难度:来源:
如图(1),A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF,若将△DEC的边EC沿AC方向移动变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.
答案
(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DGE,从而得出FG=EG,即BD平分EF.
(2)结论仍然成立,同样可以证明得到.
解析

试题分析:(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DGE,从而得出FG=EG,即BD平分EF.
(2)结论仍然成立,同样可以证明得到.
(1)证明:∵DE⊥AC,BF⊥AC,
∴∠DEG=∠BFE=90°.
∵AE=CF,AE+EF=CF+EF.
即AF=CE.
在Rt△ABF和Rt△CDE中,

∴Rt△ABF≌Rt△CDE(HL),
∴BF=DE.
在△BFG和△DEG中,

∴△BFG≌△DGE(AAS),
∴FG=EG,即BD平分EF.
(2)FG=EG,即BD平分EF的结论依然成立.
理由:因为 AE=CF,
所以 AF=CE,
因为 DE垂直于AC,BF垂直于AC,
所以 角AFB=角CED,BF∥DE,
因为 AB∥CD,
所以 角A=角C,
所以 三角形ABF全等于三角形CDE,
所以 BF=DE,
所以 四边形BEDF是平行四边形,
所以 GE=GF,即:BD平分EF,
即结论依然成立.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
核心考点
试题【如图(1),A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF,若将△DEC的边EC沿AC方向移动变】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
如图,两个全等的直角三角形△ABC和△A1B1C1中,∠ACB=∠A1C1B1=90°,两条相等的直角边AC,A1C1在同一直线上,A1B1与AB交于O,AB与B1C1交于E1,A1B1与BC交于E.
(1)写出图中除△ABC≌△A1B1C1外的所有其它各组全等三角形(不再连线和标注字母);
(2)求证:B1E1=BE.
题型:不详难度:| 查看答案
如图,AD=BC,请添加一个条件,使图中存在全等三角形并给予证明.
你所添加的条件为:    ;得到的一对全等三角形是△  ≌△   
题型:不详难度:| 查看答案
一副三角板如上图摆放,若∠BAE=135°17′,则∠CAD的度数是      .
题型:不详难度:| 查看答案
下列每组数分别是三根小木棒的长度,其中能摆成三角形的是(    )
A.3,4,5B.7,8,15 C.3,12,20D.5,11,5

题型:不详难度:| 查看答案
已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=(   )
A.95°B.120°C.55°D.60°

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.