当前位置:初中试题 > 数学试题 > 相似图形性质 > 根据下列证明过程填空:(1)如图,已知直线EF与AB、CD都相交,且AB∥CD,试说明∠1=∠2的理由.解:∵AB∥CD (已知)∴∠2=∠3(        ...
题目
题型:不详难度:来源:
根据下列证明过程填空:
(1)如图,已知直线EF与AB、CD都相交,且AB∥CD,试说明∠1=∠2的理由.

解:∵AB∥CD (已知)
∴∠2=∠3(                                )
∵∠1=∠3(                  )
∴∠1=∠2( 等量代换 )                  
(2)如图,已知:△AOC≌△BOD,试说明AC∥BD成立的理由.

解:∵△AOC≌△BOD
∴∠A=          (                             )
∴AC∥BD (                                )
答案
(1)两直线平行,同位角相等,对顶角相等;(2)∠B,全等三角形对应角相等,内错角相等,两直线平行
解析

试题分析:根据平行线的性质及全等三角形的性质依次分析即可.
(1)∵AB∥CD    (已知)
∴∠2=∠3(  两直线平行,同位角相等   )
∵∠1=∠3(  对顶角相等    )
∴∠1=∠2( 等量代换 ) ;
(2)∵△AOC ≌△BOD
∴∠A= ∠B   ( 全等三角形对应角相等  )
∴AC∥BD( 内错角相等  ,两直线平行    )
点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中极为重要的知识点,一般难度不大,需熟练掌握.
核心考点
试题【根据下列证明过程填空:(1)如图,已知直线EF与AB、CD都相交,且AB∥CD,试说明∠1=∠2的理由.解:∵AB∥CD (已知)∴∠2=∠3(        】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
如图,△ABC中,∠A=30°,∠A沿DE折叠后,A点落在△ABC的内部A’的位置,则∠1+∠2=  
题型:不详难度:| 查看答案
如图,∠MON=90°,AP平分∠MAB,BP平分∠ABN.

(1)求∠P的度数;
(2)若∠MON=80°,其余条件不变,求∠P的度数;
(3)经过(1)、(2)的计算,猜想并证明∠MON与∠P的关系.
题型:不详难度:| 查看答案
若在△ABC所在平面上求作一点P,使P到∠A的两边的距离相等,且PA=PB,那么下列确定P点的方法正确的是(   )
A.P是∠A与∠B两角平分线的交点    
B.P为AC、AB两边上的高的交点
C.P为∠A的角平分线与AB的垂直平分线的交点
D.P为∠A的角平分线与AB边上的中线的交点
题型:不详难度:| 查看答案
如图所示:∠A=50°,∠B=30°,∠BDC=110°, 则∠C=______°;
题型:不详难度:| 查看答案
直角三角形的斜边长是, 一条直角边的长是, 那么当另一条直角边达到最大时, 这个直角三角形的周长的范围大致在  (   )
A.3与4之间B.4与5之间C.5与6之间D.6与7之间

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.