当前位置:初中试题 > 数学试题 > 相似图形性质 > 如图是长为40cm,宽为16cm的矩形纸片,M点为一边上的中点,沿过M的直线翻折.若中点M所在边的一个顶点不能落在对边上,那么折痕长度为   cm....
题目
题型:不详难度:来源:
如图是长为40cm,宽为16cm的矩形纸片,M点为一边上的中点,沿过M的直线翻折.若中点M所在边的一个顶点不能落在对边上,那么折痕长度为   cm.

答案
10或8
解析

试题分析:分两种情况考虑:
(i)如图1所示,过M作ME⊥AD于E,G在AB上,B′落在AE上,可得四边形ABME为矩形,

∴EM=AB=16,AE=BM,
又∵BC=40,M为BC的中点,
∴由折叠可得:B′M=BM=BC=20,
在Rt△EFB′中,根据勾股定理得:B′E=12,
∴AB′=AE﹣B′E=20﹣12=8,
设AG=x,则有GB′=GB=16﹣x,
在Rt△AGB′中,根据勾股定理得:GB′2=AG2+AB′2
即(16﹣x)2=x2+82
解得:x=6,
∴GB=16﹣6=10,
在Rt△GBF中,根据勾股定理得:GM=10
(ii)如图2所示,过F作FE⊥AD于E,G在AE上,B′落在ED上,可得四边形ABME为矩形,

∴EM=AB=16,AE=BM,
又BC=40,M为BC的中点,
∴由折叠可得:B′M=BM=BC=20,
在Rt△EMB′中,根据勾股定理得:B′E=12,
∴AB′=AE﹣B′E=20﹣12=8,
设AG=A′G=y,则GB′=AB′﹣AG=AE+EB′﹣AG=32﹣y,A′B′=AB=16,
在Rt△A′B′G中,根据勾股定理得:A′G2+A′B′2=GB′2
即y2+162=(32﹣y)2
解得:y=12,
∴AG=12,
∴GE=AE﹣AG=20﹣12=8,
在Rt△GEF中,根据勾股定理得:GM=8
综上,折痕FG=10或8
故答案是10或8
核心考点
试题【如图是长为40cm,宽为16cm的矩形纸片,M点为一边上的中点,沿过M的直线翻折.若中点M所在边的一个顶点不能落在对边上,那么折痕长度为   cm.】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
(1)三角形内角和等于   
(2)请证明以上命题.
题型:不详难度:| 查看答案
如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=  

题型:不详难度:| 查看答案
如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.
求证:BD平分∠ABC.

题型:不详难度:| 查看答案
如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=,OB交⊙O于点D,作AC⊥OB,垂足为M,并交⊙O于点C,连接BC.
(1)求证:BC是⊙O的切线;
(2)过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.

题型:不详难度:| 查看答案
一个正多边形的一个外角等于30°,则这个正多边形的边数为                .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.