当前位置:初中试题 > 数学试题 > 相似图形 > 在梯形ABCD中,AD∥BC,∠B=90°,AD=2cm,AB=8cm,E是AB上一点,连接DE、CE.若满足∠DEC=90°的点E有且只有一个,则BC=   ...
题目
题型:不详难度:来源:
在梯形ABCD中,AD∥BC,∠B=90°,AD=2cm,AB=8cm,E是AB上一点,连接DE、CE.若满足∠DEC=90°的点E有且只有一个,则BC=   cm.
答案
8
解析

试题分析:由题题证得△ADE∽△BEC,再根据相似三角形的性质即可作出判断.
由题题易证得△ADE∽△BEC

∵AD=2cm,AB=8cm

∵满足∠DEC=90°的点E有且只有一个
∴BC=8 cm.
点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
核心考点
试题【在梯形ABCD中,AD∥BC,∠B=90°,AD=2cm,AB=8cm,E是AB上一点,连接DE、CE.若满足∠DEC=90°的点E有且只有一个,则BC=   】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
(1)如图①,P为△ABC的边AB上一点(P不与点A、点B重合),连接PC,如果△CBP∽△ABC,那么就称P为△ABC的边AB上的相似点.
画法初探
①如图②,在△ABC中,∠ACB>90°,画出△ABC的边AB上的相似点P(画图工具不限,保留画图痕迹或有必要的说明);

辩证思考
②是不是所有的三角形都存在它的边上的相似点?如果是,请说明理由;如果不是,请找出一个不存在边上相似点的三角形;
特例分析
③已知P为△ABC的边AB上的相似点,连接PC,若△ACP∽△ABC,则△ABC的形状是   
④如图③,在△ABC中,AB=AC,∠A=36°,P是边AB上的相似点,求的值.
(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的点(P不与点A、点B重合),作PQ⊥CD,垂足为Q.如果矩形ADQP∽矩形ABCD,那么就称PQ为矩形ABCD的边AB、CD上的相似线.

①类比(1)中的“画法初探”,可以提出问题:对于如图④的矩形ABCD,在不限制画图工具的前提下,如何画出它的边AB、CD上的相似线PQ呢?
你的解答是:   (只需描述PQ的画法,不需在图上画出PQ).
②请继续类比(1)中的“辩证思考”、“特例分析”两个栏目对矩形的相似线进行研究,要求每个栏目提出一个问题并解决.
题型:不详难度:| 查看答案
如图,已知AB=3,BC=7,CD=.且AB⊥BC,∠BCD=135°。点M是线段BC上的一个动点,连接AM、DM。
①点M在运动过程中,当AM+DM的值最小时,BM=        
②当 AM2+DM2的值最小时,BM=        
题型:不详难度:| 查看答案
如图,在矩形中,,点在边  上的,过点,交边于点,再把沿对折,点的对应点恰好落在边上,则CP=       .
题型:不详难度:| 查看答案
如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件                      (只需写一个).
题型:不详难度:| 查看答案
已知:把按如图(1)摆放(点与点重合),点)、在同一条直线上..如图(2),从图(1)的位置出发,以的速度沿匀速移动,在移动的同时,点的顶点出发,以2 cm/s的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动.相交于点,连接,设移动时间为

(1)当为何值时,点在线段的垂直平分线上?
(2)连接,设四边形的面积为,求之间的函数关系式;是否存在某一时刻,使面积最小?若存在,求出的最小值;若不存在,说明理由.
(3)是否存在某一时刻,使三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.