当前位置:初中试题 > 数学试题 > 相似图形 > (2013年四川眉山3分)如图,在函数(x<0)和(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=,S△BOC=,则...
题目
题型:不详难度:来源:
(2013年四川眉山3分)如图,在函数(x<0)和(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,SAOC=,SBOC=,则线段AB的长度=   

答案

解析
∵SAOC=,SBOC=,∴|k1|=|k2|=。∴k1=﹣1,k2=9。,
∴两反比例解析式为
设B点坐标为(,t)(t>0),
∵AB∥x轴,∴A点的纵坐标为t。
把y=t代入。∴A点坐标为(,t)。
∵OA⊥OB,∴∠AOC=∠OBC。∴Rt△AOC∽Rt△OBC。
∴OC:BC=AC:BC,即t: =:t,解得∴t=
∴A点坐标为(),B点坐标为(3)。
∴线段AB的长度=3﹣()=
核心考点
试题【(2013年四川眉山3分)如图,在函数(x<0)和(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=,S△BOC=,则】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
(2013年四川绵阳12分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.

(1)若E是AB的中点,求F点的坐标;
(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.
题型:不详难度:| 查看答案
(2013年四川绵阳14分)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:

(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:
(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;
(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,SAGH分别表示四边形BCHG和△AGH的面积,试探究的最大值.
题型:不详难度:| 查看答案
(2013年四川南充8分)如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为BC边上一点(不与B,C重合),过点P作∠APE=∠B,PE交CD 于E.

(1)求证:△APB∽△PEC;
(2)若CE=3,求BP的长.
题型:不详难度:| 查看答案
(2013年四川自贡4分)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为【   】
A.11B.10C.9D.8

题型:不详难度:| 查看答案
在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE=       

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.