当前位置:初中试题 > 数学试题 > 相似图形 > 如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D...
题目
题型:不详难度:来源:
如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.

(1)求线段CE的长;
(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;
(3)连结DF,
①当t取何值时,有?
②直接写出ΔCDF的外接圆与OA相切时t的值.
答案
(1)线段CE的长为
(2)S=﹣t)2,t的取值范围为:0≤t≤
(3)①当t=时,DF=CD;②ΔCDF的外接圆与OA相切时t=
解析

试题分析:(1)直接根据勾股定理求出CE的长即可;
(2)作FH⊥CD于H.,由AB∥OD,DE⊥OD,OB⊥OD可知四边形ODEB是矩形,故可用t表示出AE及BE的长,由相似三角形的判定定理可得出△OCF∽△AEF,△ODG∽△AEG,由相似三角形的性质可用t表示出CF及EG的长,FH∥ED可求出HD的长,由三角形的面积公式可求出S与t的关系式;
(3)①由(2)知CF=t,当DF=CD时,作DK⊥CF于K,则CK=CF=t,CK=CDcos∠DCE,由此可得出t的值;
②先根据勾股定理求出OA的长,由(2)知HD=(5﹣t),由相似三角形的判定定理得出Rt△AOB∽Rt△OFH,可用t表示出OF的长,因为当△CDF的外接圆与OA相切时,则OF为切线,OD为割线,由切割线定理可知OF2=OC•OD,故可得出结论.
试题解析:(1)∵在Rt△CDE中,CD=,DE=2,
∴CE=
(2)如图1,作FH⊥CD于H.

∵AB∥OD,DE⊥OD,OB⊥OD,
∴四边形ODEB是矩形,
∴BE=OD,
∵OC=t,
∴BE=OD=OC+CD=t+
∴AE=AB﹣BE=4﹣(t+)=﹣t,
∵AB∥OD,
∴△OCF∽△AEF,△ODG∽△AEG,

又∵CF+EF=5,DG+EG=4,

∴CF=t,EG=
∴EF=CE﹣CF=5﹣t,
∵FH∥ED,
,即HD=•CD=﹣t),
∴S=EG•HD=××﹣t)=﹣t)2
t的取值范围为:0≤t≤
(3)①由(2)知CF=t,
如图2,当DF=CD时,如图作DK⊥CF于K,

则CK=CF=t,
∵CK=CDcos∠DCE,
t=3×
解得:t=
∴当t=时,DF=CD;
②∵点A,B坐标分别为(8,4),(0,4),
∴AB=8,OB=4,
∴OA==4
∵由(2)知HD=(5﹣t),
∴OH=t+3﹣(5﹣t)=
∵∠A+∠AOB=∠AOD+∠AOB=90°,
∴∠A=∠AOD,
∴Rt△AOB∽Rt△OFH,

解得OF=
∵当△CDF的外接圆与OA相切时,则OF为切线,OD为割线,
∴OF2=OC•OD,即(2=t(t+3),得t=
核心考点
试题【如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是
A.∠ABD=∠CB.∠ADB=∠ABC
C.D.

题型:不详难度:| 查看答案
下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是(  )


题型:不详难度:| 查看答案
已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=(  )
A.B.
C.D.2

题型:不详难度:| 查看答案
如图,在一场羽毛球比赛中,站在场内M处的运动员林丹把球从N点击到了对方内的B点,已知网高OA=1.52米,OB=4米,OM=5米,则林丹起跳后击球点N离地面的距离NM=    米.

题型:不详难度:| 查看答案
下列多边形一定相似的为(    )
A.两个三角形B.两个四边形 C.两个正方形 D.两个平行四边形

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.