当前位置:初中试题 > 数学试题 > 相似图形 > 如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,且DG平分△ABC的周长,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:D...
题目
题型:不详难度:来源:
如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,且DG平分△ABC的周长,设BC=a、AC=b、AB=c.
(1)求线段BG的长;
(2)求证:DG平分∠EDF;
(3)连接CG,如图2,若△GBD ∽△GDF,求证:BG⊥CG.

答案
(1)(b+c);(2)证明见解析;(3)证明见解析.
解析

试题分析:(1)由△BDG与四边形ACDG的周长相等与BD=CD,易得BG=AC+AG,即可得BG=(AB+AC);
(2)由点D、F分别是BC、AB的中点,利用三角形中位线的性质,易得DF=AC=b,由FG=BG-BF,求得DF=FG,又由DE∥AB,即可求得∠FDG=∠EDG;
(3)由△BDG与△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),可得∠B=∠FDG,又由(2)得:∠FGD=∠FDG,易证得DG=BD=CD,可得B、G、C三点在以BC为直径的圆周上,由圆周角定理,即可得BG⊥CG.
试题解析:(1)解:∵△BDG与四边形ACDG的周长相等,
∴BD+BG+DG=AC+CD+DG+AG,
∵D是BC的中点,
∴BD=CD,
∴BG=AC+AG,
∵BG+(AC+AG)=AB+AC,
∴BG=(AB+AC)=(b+c);
(2)证明:∵点D、F分别是BC、AB的中点,
∴DF=AC=b,BF=AB=c,
又∵FG=BG-BF=(b+c)-c=b,
∴DF=FG,
∴∠FDG=∠FGD,
∵点D、E分别是BC、AC的中点,
∴DE∥AB,
∴∠EDG=∠FGD,
∴∠FDG=∠EDG,
即DG平分∠EDF;
(3)证明:∵△BDG与△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),
∴∠B=∠FDG,
由(2)得:∠FGD=∠FDG,
∴∠FGD=∠B,
∴DG=BD,
∵BD=CD,
∴DG=BD=CD,
∴B、G、C三点在以BC为直径的圆周上,
∴∠BGC=90°,
即BG⊥CG.
核心考点
试题【如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,且DG平分△ABC的周长,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:D】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是(   )
A.6米B.8米C.18米D.24米

题型:不详难度:| 查看答案
已知,且相似比为,若边上的中线,则边上的中线=        
题型:不详难度:| 查看答案
如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为__________米.

题型:不详难度:| 查看答案
如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6, ,则EC的长是(   )
A.4.5B.8 C.10.5 D.14

题型:不详难度:| 查看答案
数学课上,张老师出示图1和下面的条件:如图1,两个等腰直角三角板ABC和DEF有一条边在同一条直线l上,DE=2,AB=1.将直线EB绕点E逆时针旋转45°,交直线AD于点M.将图1中的三角板ABC沿直线l向右平移,设C、E两点间的距离为k.
解答问题:
(1)①当点C与点F重合时,如图2所示,可得的值为       
②在平移过程中,的值为           (用含k的代数式表示);
(2)将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变.当点A落在线段DF上时,如图3所示,请补全图形,计算的值;
(3)将图1中的三角板ABC绕点C逆时针旋转α度,0<α≤90,原题中的其他条件保持不变.计算 的值(用含k的代数式表示).

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.