当前位置:初中试题 > 数学试题 > 正方形 > 如图,四边形ABCD和MNPQ都是边长为a的正方形,点A是MNPQ的中心(即两条对角线MP和NQ的交点),点E是AB与MN的交点,点F是NP与AD的交点,则四边...
题目
题型:不详难度:来源:
如图,四边形ABCD和MNPQ都是边长为a的正方形,点A是MNPQ的中心(即两条对角线MP和NQ的交点),点E是AB与MN的交点,点F是NP与AD的交点,则四边形AENF的面积是(  )
A.
a2
4
B.
a2
3
C.
2a2
5
D.
2a2
3

答案
连接AP,AN,点A是正方形的对角线的交点,
则AP=AN,∠APF=∠ANE=45°,
∵∠PAF+∠FAN=∠FAN+∠NAE=90°,
∴∠PAF=∠NAE,
∴△PAF≌△NAE,
∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的
1
4
,正方形的面积为a2
∴四边形AENF的面积为
a2
4

故选A
核心考点
试题【如图,四边形ABCD和MNPQ都是边长为a的正方形,点A是MNPQ的中心(即两条对角线MP和NQ的交点),点E是AB与MN的交点,点F是NP与AD的交点,则四边】;主要考察你对正方形等知识点的理解。[详细]
举一反三
如图,在正方形ABCD中,对角线AC与BD相交于点O,AF平分∠BAC,交BD于点F.

(1)求证:AB-OF=
1
2
AC

(2)点A1、点C1分别同时从A、C两点出发,以相同的速度运动相同的时间后同时停止,如图,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E⊥A1C1,垂足为E,请猜想EF1,AB与
1
2
A1C1
三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当A1E1=6,C1E1=4时,求BD的长.
题型:不详难度:| 查看答案
如图,已知直线l1l2l3l4,相邻两条平行直线间的距离都是2,线段AB的两端点分别在直线l1、l3上并与l2相交于点E,
①AE与BE的长度大小关系为______;
②若以线段AB为一边作正方形ABCD,C、D两点恰好分别在直线l2、l4上,则sinα=______.
题型:不详难度:| 查看答案
已知:如图正方形ABCD,E是BC的中点,F在AB上,且BF=
1
4
AB,猜想EF与DE的位置关系,并说明理由.
题型:不详难度:| 查看答案
如图,一个直角三角形的直角顶点P在正方形ABCD的对角线AC所在的直线上滑动,并使得一条直角边始终经过B点.
(1)如图1,当直角三角形的另一条直角边和边CD交于Q点,
PB
PQ
=______;
(2)如图2,当另一条直角边和边CD的延长线相交于Q点时,
PB
PQ
=______;
(3)如图3或图4,当直角顶点P运动到AC或CA的延长线上时,请你在图3或图4中任选一种情形,求
PB
PQ
的值,并说明理由.
题型:不详难度:| 查看答案
如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=3,BE=4,则阴影部分的面积是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.