当前位置:初中试题 > 数学试题 > 正方形 > 已知:如图1,点O为正方形ABCD内任一点,连接AO、BO,分别以AO、BO为一边作如图所示正方形BOMN和正方形AOFE,连接CN(1)AE、CN之间有怎样的...
题目
题型:不详难度:来源:
已知:如图1,点O为正方形ABCD内任一点,连接AO、BO,分别以AO、BO为一边作如图所示正方形BOMN和正方形AOFE,连接CN
(1)AE、CN之间有怎样的关系?请验证;
(2)若点O是正方形ABCD外部一点,如图2,其他条件不变(1)的结论是否成立?请验证.
答案

证明:(1)AE=CN,AECN,理由为:
连接ED、AN、EC,如图1所示,
∵正方形ABCD、AOFE,
∴∠DAB=∠EAO=90°,AO=AF,AD=AB,
∴∠EAD+∠DAO=90°,∠DAO+∠OAB=90°,
∴∠EAD=∠OAB,
在△AED和△ABO中,





AE=AO
∠EAD=∠ABO
AD=AB

∴△AED≌△ABO(SAS),
∴ED=BO,
∵BO=BN,
∴ED=BN,
同理AE=CN,
∵△AED≌△CBN,
∴∠ADE=∠CBN,
∴∠ADE+90°=∠CBN+90°,即∠EDC=∠ABN,
在△EDC和△ABN中,





DC=AB
∠EDC=∠ABN
ED=BN

∴△EDC≌△ABN(SAS),
∴EC=AN,
∴四边形AECN是平行四边形,
∴AE=CN,AECN;
(2)结论不变,AE=CN,AECN,
证明:连接ED、AN、EC,如图2所示,
同上问证明△AED≌△CBN≌△AOB,
∴AE=CN,△EDC≌△ABN,
∴AN=EC,
∴四边形AECN是平行四边形,
∴AE=CN,AECN.
核心考点
试题【已知:如图1,点O为正方形ABCD内任一点,连接AO、BO,分别以AO、BO为一边作如图所示正方形BOMN和正方形AOFE,连接CN(1)AE、CN之间有怎样的】;主要考察你对正方形等知识点的理解。[详细]
举一反三
在正方形ABCD内取一点M,使△MAB是等边三角形,那么∠ADM的度数是______.
题型:不详难度:| 查看答案
已知四边形ABCD各边中点分别E,F,G,H,如果四边形ABCD是______,那么四边形EFGH是正方形.
题型:不详难度:| 查看答案
如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…,依此类推,若正方形①的边长为64cm,则正方形⑦的边长为______cm.
题型:不详难度:| 查看答案
如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=______.
题型:不详难度:| 查看答案
如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点D的坐标是(3,4),则点B的坐标是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.