当前位置:初中试题 > 数学试题 > 全等三角形的应用 > 锐角为45°的直角三角形的两直角边长也相等,这样的三角形称为等腰直角三角形.我们常用的三角板中有一块就是这样的三角形,也可称它为等腰直角三角板.把两块全等的等腰...
题目
题型:江苏省期末题难度:来源:
锐角为45°的直角三角形的两直角边长也相等,这样的三角形称为等腰直角三角形.我们常用的三角板中有一块就是这样的三角形,也可称它为等腰直角三角板.把两块全等的等腰直角三角板按如图1放置,其中边BC、FP均在直线l上,边EF与边AC重合.
(1)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;
(2)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.
答案
解:(1)BQ=AP,BQ⊥AP.
证明:延长BQ交AP于点M,
∵△ABC和△EFP都是等腰直角三角板,
∴BC=AC,AC⊥BC,∠EPF=45°,
∴∠BCQ=∠ACP=90°,∠CQP=∠EPF=45°,
∴CQ=CP,
在△BCQ和△ACP中,
∴△BCQ≌△ACP(SAS),
∴BQ=AP,∠CBQ=∠CAP,
∵∠BCQ=90°,
∴∠CBQ+∠BQC=90°,
∵∠BQC=∠AQM(对顶角相等),
∴∠CAP+∠AQM=90°,
∴∠AMB=90°,
∴BQ⊥AP;
核心考点
试题【锐角为45°的直角三角形的两直角边长也相等,这样的三角形称为等腰直角三角形.我们常用的三角板中有一块就是这样的三角形,也可称它为等腰直角三角板.把两块全等的等腰】;主要考察你对全等三角形的应用等知识点的理解。[详细]
举一反三
如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=
[     ]
A.2
B.3
C.
D.
题型:江苏省期末题难度:| 查看答案
已知△ABC≌△DEF,且△ABC的周长为12,AB=5,BC=4,则DF=(    )
题型:江苏省期末题难度:| 查看答案
如图,AB=EB,BC=BF,∠ABE=∠CBF,EF和AC相等吗?为什么?
题型:江苏省期末题难度:| 查看答案
如图,已知AB⊥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD=(    )cm.
题型:江苏省期末题难度:| 查看答案
如图所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.
题型:江苏省期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.