当前位置:初中试题 > 数学试题 > 平行线间距离 > 平面内两条直线l1∥l2,它们之间的距离等于a.一块正方形纸板ABCD的边长也等于a.现将这块硬纸板如图所示放在两条平行线上.(1)如图1,将点C放置在直线l2...
题目
题型:江西模拟难度:来源:
平面内两条直线l1l2,它们之间的距离等于a.一块正方形纸板ABCD的边长也等于a.现将这块硬纸板如图所示放在两条平行线上.
(1)如图1,将点C放置在直线l2上,且AC⊥l1于O,使得直线l1与AB、AD相交于E、F,证明:△AEF的周长等于2a;
请你继续完成下面的探索:
(2)如图2,若绕点C转动正方形硬纸板ABCD,使得直线l1与AB、AD相交于E、F,试问△AEF的周长等于2a还成立吗?并证明你的结论;
(3)如图3,将正方形硬纸片ABCD任意放置,使得直线l1与AB、AD相交于E、F,直线l2与BC、CD相交于G,H,设△AEF的周长为m1,△CGH的周长为m2,试问m1,m2和a之间存在着什么关系?试证明你的结论.

魔方格
答案
(1)证明:连接EC,FC.
∵AC⊥l1
∴∠B=∠COE=90°.
在Rt△BCE和Rt△OCE中
又∵BC=CO=a,EC=EC,
∴△BCE≌△OCE(HL).
∴BE=EO.同理OF=FD.
∴AE+AF+EF=AB+AD=2a.

(2)如图4,过C作CM⊥EF于M,
魔方格

则∠B=∠EMC=90°.
在Rt△BCE和Rt△MCE中,
∵BC=CM=a,EC=EC,
∴△BCE≌△MCE(HL),
同理△CMF≌△CDF
得BE=ME,MF=DF.
∴AE+AF+EF=AB+AD=2a.

(3)m1+m2=2a
证明:如图5将l1,l2分别同时向下平移相同的距离,则l4和l3的距离还是a,使得l4经过点C,l3交AB于M,交AD于N
由(2)的证明知AM+MN+AN=2a,
过F作FKAB交MN于K.
∴四边形EMKF为平行四边形.
∴EF=MK,FK=EM,
∵作FQ⊥MN于Q,CP⊥GH于P.则FQ=CP.
魔方格

∵FKAB,
∴∠FKQ=∠AMN.
作BJMN,
∴∠AMN=∠ABJ.
∵∠ABJ+∠CBJ=90°,∠CBJ=∠BGT=∠CGP,∠CGP+∠GHC=90°.
∴∠FKQ=∠GHC.
∴△FQK≌△CPH
∴FK=CH,KQ=PH.
同理FN=GC,NQ=GP.
∴KN=GH.则AE+AF+EF+GC+CH+GH,
=AE+EM+AF+FN+MK+KN,
=AM+AN+MN,
=2a.
核心考点
试题【平面内两条直线l1∥l2,它们之间的距离等于a.一块正方形纸板ABCD的边长也等于a.现将这块硬纸板如图所示放在两条平行线上.(1)如图1,将点C放置在直线l2】;主要考察你对平行线间距离等知识点的理解。[详细]
举一反三
探究规律:
如图,已知直线mn,A,B为直线m上的两点,C,P为直线n上两点.
(1)请写出图中面积相等的各对三角形:______.
(2)如果A,B,C为三个定点,点P在n上移动,那么,无论P点移动到任何位置,总有______与△ABC的面积相等.理由是:______.

魔方格
题型:不详难度:| 查看答案
如图,已知:直线mn,A,B为直线n上两点,C、P为直线m上两点.
(1)如果A、B、C为三个定点,点P在直线m上移动,那么,无论P点移动到任何位置,总有______与△ABC的面积相等.理由是:______.
(2)请写出(1)中其余几对面积相等的三角形:______.魔方格
题型:不详难度:| 查看答案
面积为4cm2的正方形的两条对边所在的直线之间的距离为______cm.
题型:不详难度:| 查看答案
如图,直线l1、l2、l3分别过正方形ABCD的三个顶点A,B,D,且相互平行,若l1与l2的距离为1,l2与l3的距离为1,则该正方形的面积是______.魔方格
题型:不详难度:| 查看答案
如图,BC为固定的木条,AB,AC为可伸缩的橡皮筋.当点A在与BC平行的轨道上滑动时,你能说明△ABC的面积将如何变化吗?并简述你的理由.魔方格
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.