当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.(1)求抛物线解析式;(2)BC...
题目
题型:不详难度:来源:
如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.
(1)求抛物线解析式;
(2)BC的垂直平分线交抛物线于D、E两点,求直线DE的解析式.
答案
(1)将A、B、C三点坐标代入可得:





a+b+c=1
16a+4b+c=0
c=2

解得:





a=
1
2
b=-
5
2
c=2

故这个抛物线的解析式为y=
1
2
x2-
5
2
x+2;

(2)解法一:
如图1,设BC的垂直平分线DE交BC于M,交x轴于N,连接CN,过点M作MF⊥x轴于F,
∴△BMF△BCO,
MF
CO
=
BF
BO
=
BM
BC
=
1
2

∵B(4,0),C(0,2),
∴CO=2,BO=4,
∴MF=1,BF=2,
∴M(2,1),
∵MN是BC的垂直平分线,
∴CN=BN,
设ON=x,则CN=BN=4-x,
在Rt△OCN中,CN2=OC2+ON2
∴(4-x)2=22+x2
解得:x=
3
2

∴N(
3
2
,0).
设直线DE的解析式为y=kx+b,
依题意,得:





2k+b=1
3
2
k+b=0

解得:





k=2
b=-3

∴直线DE的解析式为y=2x-3.
解法二:
如图2,设BC的垂直平分线DE交BC于M,交x轴于N,连接CN,过点C作CFx轴交DE于F.
∵MN是BC的垂直平分线,
∴CN=BN,CM=BM.
设ON=x,则CN=BN=4-x,
在Rt△OCN中,CN2=OC2+ON2
∴(4-x)2=22+x2
解得:x=
3
2

∴N(
3
2
,0).
∴BN=4-
3
2
=
5
2

∵CFx轴,
∴∠CFM=∠BNM.
∵∠CMF=∠BMN,
∴△CMF≌△BMN.
∴CF=BN.
∴F(
5
2
,2).
设直线DE的解析式为y=kx+b,
依题意,得:





5
2
k+b=2
3
2
k+b=0

解得:





k=2
b=-3

∴直线DE的解析式为y=2x-3.
核心考点
试题【如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.(1)求抛物线解析式;(2)BC】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
一名学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的函数关系为y=-
1
12
x2+
2
3
x+
5
3

(1)画出函数的图象.
(2)观察图象,指出铅球推出的距离.
题型:不详难度:| 查看答案
如图:抛物线y=ax2-4ax+m与x轴交于A、B两点,点A的坐标是(1,0),与y轴交于点C.
(1)求抛物线的对称轴和点B的坐标;
(2)过点C作CP⊥对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且∠BPD=∠BCP,求抛物线的解析式;
(3)在(2)的条件下,设抛物线的顶点为G,连接BG、CG、求△BCG的面积.
题型:不详难度:| 查看答案
如图所示,桥拱是抛物线形,其函数的表达式为y=-
1
4
x2
,当水位线在AB位置时,水面宽12m,这时水面离桥顶的高度为(  )
A.3mB.2


6
m
C.4


3
m
D.9m

题型:不详难度:| 查看答案
衢江区某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价 w1与上市时间t的关系用图甲的一条折线表示;西红柿的种植成本 w2与上市时间t的关系用图乙表示的抛物线段表示.
(1)求出图甲表示的市场售价 w1与时间t的函数关系式;
(2)求出图乙表示的种植成本 w2与时间t的函数关系式;
(3)市场售价减去种植成本为纯收益,当0<t≤200时,何时上市西红柿纯收益最大?(售价与成本单位:元/百千克,时间单位:天)
题型:不详难度:| 查看答案
如图,已知二次函数y=-
1
2
x2+bx+c
的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x轴的另一个交点;
(3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.