当前位置:初中试题 > 数学试题 > 二次函数的图象 > 已知抛物线y=。(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点;(2)如图,当该抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1...
题目
题型:湖南省中考真题难度:来源:
已知抛物线y=
(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点;
(2)如图,当该抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A、B两点,并与它的对称轴交于点D;
①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;
②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得C、D、M、N为顶点的四边形是平行四边形。
答案

解:(1)
∵不管m为何实数,总有(m-2)2≥0,
>0,
∴无论m为何实数,该抛物线与x轴总有两个不同的交点;
(2)∵抛物线的对称轴为直线x=3,
∴m=3,
抛物线的解析式为,顶点C坐标为(3,-2),
解方程组,解得,所以A的坐标为(1,0)、B的坐标为(7,6),∵x=3时y=x-1=3-1=2,
∴D的坐标为(3,2),
设抛物线的对称轴与x轴的交点为E,则E的坐标为(3,0),所以AE=BE=3,DE=CE=2,
①假设抛物线上存在一点P使得四边形ACPD是正方形,则AP、CD互相垂直平分且相等,于是P与点B重合,但AP=6,CD=4,AP≠CD,故抛物线上不存在一点P使得四边形ACPD是正方形;
②(Ⅰ)设直线CD向右平移n个单位(n>0)可使得C、D、M、N为顶点的四边形是平行四边形,
则直线CD的解析式为x=3+n,直线CD与直线y=x-1交于点M(3+n,2+n),
又∵D的坐标为(3,2),C坐标为(3,-2),
∴D通过向下平移4个单位得到C,
∵C、D、M、N为顶点的四边形是平行四边形,
∴四边形CDMN是平行四边形或四边形CDNM是平行四边形,
(ⅰ)当四边形CDMN是平行四边形,
∴M向下平移4个单位得N,
∴N坐标为(3+n,n-2),
又N在抛物线上,
,解得(不合题意,舍去),
(ⅱ)当四边形CDNM是平行四边形,∴M向上平移4个单位得N,
∴N坐标为(3+n,n+6),
又N在抛物线上,∴,解得(不合题意,舍去),
(Ⅱ)设直线CD向左平移n个单位(n>0)可使得C、D、M、N为顶点的四边形是平行四边形,
则直线CD的解析式为x=3-n,直线CD与直线y=x-1交于点M(3-n,2-n),
又∵D的坐标为(3,2),C坐标为(3,-2),
∴D通过向下平移4个单位得到C,
∵C、D、M、N为顶点的四边形是平行四边形,
∴四边形CDMN是平行四边形或四边形CDNM是平行四边形;
(ⅰ)当四边形CDMN是平行四边形,
∴M向下平移4个单位得N,
∴N坐标为(3-n,-2-n),
又N在抛物线上,
,解得(不合题意,舍去),(不合题意,舍去);
(ⅱ)当四边形CDNM是平行四边形,
∴M向上平移4个单位得N,
∴N坐标为(3-n,6-n),
又N在抛物线上,
,解得(不合题意,舍去),
综上所述,直线CD向右平移2或()个单位或向左平移()个单位,可使得C、D、M、N为顶点的四边形是平行四边形。

核心考点
试题【已知抛物线y=。(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点;(2)如图,当该抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1】;主要考察你对二次函数的图象等知识点的理解。[详细]
举一反三
孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线y=ax2(a<0)的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下问题:
(1)若测得 OA=OB=(如图1),求a的值;
(2)对同一条抛物线,孔明将三角板绕点O旋转到如图2所示位置时,过B作BF⊥x轴于点F,测得OF=1,写出此时点B的坐标,并求点A的横坐标;
(3)对该抛物线,孔明将三角板绕点O旋转任意角度时惊奇地发现,交点A、B的连线段总经过一个固定的点,试说明理由并求出该点的坐标。
题型:湖南省中考真题难度:| 查看答案
已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是[     ]
A.(1,0)
B.(2,0)
C.(-2,0)
D.(-1,0)
题型:江西省中考真题难度:| 查看答案
已知:抛物线y=a(x-2)2+b(ab<0)的顶点为A,与x轴的交点为B,C(点B在点C的左侧)。
(1)直接写出抛物线对称轴方程;
(2)若抛物线经过原点,且△ABC为直角三角形,求a,b的值;
(3)若D为抛物线对称轴上一点,则以A,B,C,D为顶点的四边形能否为正方形?若能,请写出a,b满足的关系式;若不能,说明理由。
题型:江西省中考真题难度:| 查看答案
已知函数y=mx2-6x+1(m是常数)。
⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
⑵若该函数的图象与x轴只有一个交点,求m的值。
题型:江苏中考真题难度:| 查看答案
抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是
[     ]
A、b2-4ac<0
B、abc<0
C、<-1
D、a-b+c<0
题型:云南省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.