当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(,0).将矩形OABC绕原点顺时针旋转90°,得到矩形.设直线与轴交于点M、与轴交于点N,抛物线的...
题目
题型:不详难度:来源:
如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(,0).将矩形OABC绕原点顺时针旋转90°,得到矩形.设直线轴交于点M、与轴交于点N,抛物线的图象经过点C、M、N.解答下列问题:
(1)分别求出直线和抛物线所表示的函数解析式;
(2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由.
(3)将抛物线进行平移,使它经过点,求此时抛物线的解析式.
答案
(1)由题意得,B(,3),(3,1),∴直线的解析式为;直线轴的交点为M(5,0),与轴的交点N(0,),设抛物线的解析式为,∵抛物线过点N,∴,∴,∴抛物线的解析式为=
(2)将△MON沿直线MN翻折,点O落在点P处,则P为(2,4),点P不在抛物线上;
(3)若抛物线上下平移经过点,此时解析式为;当时,,∴=,若抛物线向左平移经过点,平移距离为,此时解析式为=;若抛物线向右平移经过点,此时解析式为
解析
(1)根据四边形OABC是矩形可知B(-1,3).根据旋转的性质,得B′(3,1).
把B(-1,3),B′(3,1)代入y=mx+n中,利用待定系数法可解得
由(1)得,N(0, ),M(5,0).由C(-1,0),M(5,0),N(0,)得,利用待定系数法可得二次函数解析式为y=
(3)根据抛物线平移的特征可以得到抛物线的解析式。
核心考点
试题【如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(,0).将矩形OABC绕原点顺时针旋转90°,得到矩形.设直线与轴交于点M、与轴交于点N,抛物线的】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
题型:难度:| 查看答案
随着我市近几年城市园林绿化建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,如图①所示;种植花卉的利润y2与投资成本x成二次函数关系,如图②所示(注:利润与投资成本的单位:万元)
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户计划以8万元资金投入种植花卉和树木,请求出他所获得的总利润Z与投入种植花卉的投资量x之间的函数关系式,并回答他至少获得多少利润?他能获取的最大利润是多少?
题型:不详难度:| 查看答案
我市某品牌服装公司生产的玩具4月份每件生产成本为50元,5、6月每件玩具生产成本平均降低的百分率为x.
(1)用含x的代数式表示5月份每件玩具的生产成本;
(2)如果6月份每件生产成本比4月份少9.5元,试求x的值;
(3)该玩具5月份每件的销售价为60元,6月份每件的销售价比5月份有所下降,若下降的百分率与5、6月份每件玩具平均降低成本的百分率相同,且6月份每件玩具的销售价不低于48元,设6月份每件玩具获得的利润为y元,试求y与x的函数关系式,并确定单件利润y的最大值.(注:利润=销售价-生产成本)
题型:不详难度:| 查看答案
已知二次函数y=-x2+4x+5图像交x轴于点A、B,交y轴于点C,点D是该函数图像上一点,且点D的横坐标为4,连BD,点P是AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).
(1)求点B,C,D的坐标及射线AD的解析式;
(2)在AB上是否存在点P,使⊿OCM为等腰三角形?若存在,求正方形PQMN的边长;若不存在,请说明理由;
(3)设正方形PQMN与⊿ABD重叠部分面积为s,求s与t的函数关系式.
题型:不详难度:| 查看答案
已知:直角坐标系xoy中,将直线沿y轴向下平移3个单位长度后恰好经过B(-3,0)及y轴上的C点.若抛物线轴交于A,B两点(点A在点B的右侧),且经过点C,
(1)求直线的解析式;
(2)求抛物线的解析式;
(3)设抛物线的顶点为,点在抛物线的对称轴上,且,求点的坐标;
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.