当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知抛物线y=-x2+x+(1)该抛物线的对称轴是________,顶点坐标________;(2)不列表在右上图的直角坐标系内描点画出该抛物线的图象,并且观察...
题目
题型:不详难度:来源:
已知抛物线y=-x2+x+
(1)该抛物线的对称轴是________,顶点坐标________;
(2)不列表在右上图的直角坐标系内描点画出该抛物线的图象,并且观察抛物线写出y <0时,x的取值范围;

(3)请问(2)中的抛物线经过怎样平移就可以得到y=ax2的图象?
(4)若该抛物线上两点A(x1,y1)、B(x2,y2)的横坐标满足x1>x2>1,试比y1与y2的大小
答案
(1)x=1;(1,2)(2)图略x<-1或x>3(3)向左平移1个单位,再下平移2个单位(4)y1<y2
解析

试题分析:由题意分析可知:y=-x2+x+=,故对称轴是X=1,顶点坐标是(1,2)

(3)由于该抛物线的顶点坐标是(1,2),而且根据平移的基本规律,左加右减,上加下减,可知向左平移1个单位,再下平移2个单位
(4)有题意知该抛物线开口向下,在对称轴x=1的一边,随着x的增大,y值减小,故y1<y2
点评:本题考查了二次函数图象,二次函数的性质,主要利用了对称轴、顶点坐标,与x轴的交点的求解,是基础题,一定要熟练掌握并灵活运用
核心考点
试题【已知抛物线y=-x2+x+(1)该抛物线的对称轴是________,顶点坐标________;(2)不列表在右上图的直角坐标系内描点画出该抛物线的图象,并且观察】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分,
(1)求演员弹跳离地面的最大高度;
 (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这表是
是否成功?请说明理由.
题型:不详难度:| 查看答案
二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④ a︰b︰c= -1︰2︰3.其中正确的是(    )
A.①②B.②③C.③④D.①④

题型:不详难度:| 查看答案
如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC= 4cm.D、E分别为边AB、BC的中点,连结DE.点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在线段AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M在直线AQ上.设点P的运动时间为t(s).

(1)当点P在线段DE上运动时,线段DP的长为     cm(用含t的代数式表示)
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分的面积为S(cm2),求S与t的函数关系式.
(4)连结CD.当点N与点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中点处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的值(或取值范围).
题型:不详难度:| 查看答案
如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线(a<0)的图象上,则a的值为 (    )  
 
A.B.C.D.

题型:不详难度:| 查看答案
抛物线先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是     
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.