当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,已知在△ABC中,∠A = 90°,,经过这个三角形重心的直线DE // BC,分别交边AB、AC于点D和点E,P是线段DE上的一个动点,过点P分别作PM...
题目
题型:不详难度:来源:
如图,已知在△ABC中,∠A = 90°,,经过这个三角形重心的直线DE // BC,分别交边ABAC于点D和点EP是线段DE上的一个动点,过点P分别作PMBCPFABPGAC,垂足分别为点MFG.设BM = x,四边形AFPG的面积为y

(1)求PM的长;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)联结MFMG,当△PMF与△PMG相似时,求BM的长.
答案
(1)PM =1(2) () (3)
解析

试题分析:解:(1)过点AAHBC,垂足为点H,交DE于点Q
∵ ∠BAC = 90°,,∴BC = 6.
又∵ AHBC,∴ Q是△ABC的重心.
∴ 
∵ DE // BCPMBCAHBC
∴ PM = QH = 1.
(2)延长FP,交BC于点N
∵ ∠BAC = 90°,AB = AC,∴ ∠B = 45°.
于是,由 FNAB,得 ∠PNM = 45°.
又由 PMBC,得 MN = PM = 1,
∴ BN = BM +MN = x +1,
∴ 

∵ PFABPGAC,∠BAC = 90°,∴ ∠BAC =∠PFA =∠PGA = 90°.
∴ 四边形AFPG是矩形.
∴ 
即 所求函数解析式为
定义域为
(3)∵ 四边形AFPG是矩形,∴ 
由 ∠FPM =∠GPM = 135°,可知,当△PMF与△PMG相似时,有两种
情况:∠PFM =∠PGM或∠PFM =∠PMG
(ⅰ)如果 ∠PFM =∠PGM,那么 .即得 PF = PG
∴ 
解得 x = 3.即得 BM = 3.
(ⅱ)如果 ∠PFM =∠PMG,那么 .即得 
∴ 
解得 
即得 
∴ 当△PMF与△PMG相似时,BM的长等于或3或
点评:该题相对较复杂,主要考查学生对几何图中线段的关系、面积等的表达式,求线段的长度除了可以直接求得,还可以通过等量代换求出。
核心考点
试题【如图,已知在△ABC中,∠A = 90°,,经过这个三角形重心的直线DE // BC,分别交边AB、AC于点D和点E,P是线段DE上的一个动点,过点P分别作PM】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
抛物线的部分图象如图所示,若,则x的取值范围是(    )
A.B.
C.D.

题型:不详难度:| 查看答案
抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).

(1)求抛物线的解析式;
(2)求点B的坐标及直线BC的解析式;
(3)如图,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,求△BDC的面积的最大值。
题型:不详难度:| 查看答案
为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示).对应的两条抛物线关于y轴对称,AEx轴,AB=4cm,最低点C轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为(     )

A.
B.
C.
D.

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,直线与抛物线交于AB两点,点Ax轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点AB重合),过点Px轴的垂线,垂足为C,交直线AB于点D,作PEAB于点E
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作如图所示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点FG恰好落在y轴上时,求出对应的点P的坐标.
题型:不详难度:| 查看答案
如图,抛物线y=x2x与x轴交于O,A两点. 半径为1的动圆(⊙P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(⊙Q),圆心从A点出发沿抛物线向靠近点O的方向移动. 两圆同时出发,且移动速度相等,当运动到P,Q两点重合时同时停止运动. 设点P的横坐标为t .

(1)点Q的横坐标是         (用含t的代数式表示);
(2)若⊙P与⊙Q 相离,则t的取值范围是          .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.