当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知二次函数y=-x2+bx+c的图象与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).(1)求b,c的值;(2)将二次函数y=-x2+bx+c...
题目
题型:不详难度:来源:
已知二次函数y=-x2+bx+c的图象与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)求b,c的值;
(2)将二次函数y=-x2+bx+c的图象先向下平移2个单位,再向左平移1个单位,直接写出经过两次平移后的二次函数的关系式.
答案
(1)2,3;(2)y=-x2+2
解析

试题分析:(1)由题意把(-1,0)和(0,3)代入y=-x2+bx+c即可求得结果;
(2)先把(1)中的函数关系式化为顶点式,再根据抛物线的平移规律“左加右减,上加下减”求解.
(1)把(-1,0)和(0,3)代入y=-x2+bx+c得:
解得:
(2)y=-x2+2x+3=-(x-1)2+4,
将它的图象先向下平移2个单位,再向左平移1个单位,得y=-(x-1+1)2+4-2=-x2+2.
所以经过两次平移后的二次函数的关系式是y=-x2+2.
点评:二次函数的性质是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
核心考点
试题【已知二次函数y=-x2+bx+c的图象与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).(1)求b,c的值;(2)将二次函数y=-x2+bx+c】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是(    )
A.y=(x+1)2-1B.y=(x+1)2+1
C.y=(x-1)2+1D.y=(x-1)2-1

题型:不详难度:| 查看答案
已知:直线轴于点,交轴于点,抛物线经过(1,0)三点.

(1)求抛物线的解析式;
(2)若点的坐标为(-1,0),在直线上有一点,使相似,求出点的坐标;
(3)在(2)的条件下,在轴下方的抛物线上,是否存在点,使的面积等于四边形的面积?如果存在,请求出点的坐标;如果不存在,请说明理由.
题型:不详难度:| 查看答案
先阅读理解下面的例题,再按要求解答后面的问题
例题:解一元二次不等式>0.解:令y=,画出y=如图所示,

由图像可知:当x<1或x>2时,y>0.所以一元二次不等式>0的解集为x<1或x>2.
填空:(1)<0的解集为                              
(2)>0的解集为                              
用类似的方法解一元二次不等式>0.
题型:不详难度:| 查看答案
在直角坐标平面上,横坐标与纵坐标都是整数的点称为整点.如果将二次函数
轴所围成的封闭图形染成红色,则在此红色内部区域及其边界上的
整点个数是   
题型:不详难度:| 查看答案
某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为50米的篱笆围成。已知墙长为26米(如图所示),设这个苗圃园平行于墙的一边的长为米。(1)若垂直于墙的一边长为米,直接写出的函数关系式及其自变量的取值范围;(2)当为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于300平方米时,试结合函数图象,求出的取值范围。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.