当前位置:初中试题 > 数学试题 > 二次函数定义 > 抛物线的部分图象如图所示,若,则的取值范围是        ....
题目
题型:不详难度:来源:
抛物线的部分图象如图所示,若,则的取值范围是        

答案
-3<x<1.
解析

试题分析:根据抛物线的对称轴为x=-1,一个交点为(1,0),可推出另一交点为(-3,0),结合图象求出y>0时,x的范围.
试题解析:根据抛物线的图象可知:
抛物线的对称轴为x=-1,已知一个交点为(1,0),
根据对称性,则另一交点为(-3,0),
所以y>0时,x的取值范围是-3<x<1.
考点: 二次函数的图象.
核心考点
试题【抛物线的部分图象如图所示,若,则的取值范围是        .】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
某个体户春节前代理销售某种品牌的酒,已知进价为每件40元,生产厂家要求销售价不少于40元,且不大于70元,市场调查发现:若每件以50元销售,平均每天可销售90件,价格每降低1元,平均每天多销售3件,价格每升高1元,平均每天少销售3件.
(1)写出平均每天销售量y(件)与每件销售价x(元)之间的函数关系式,并注明自变量的取值范围;
(2)求出该个体户每天销售这种酒的毛利润W(元)与每件酒的售价x(元)之间的函数关系式,并注明自变量的取值范围(每件的毛利润=售价-进价);
(3)当酒的售价为多少时平均每天的利润最大,最大利润是多少?
题型:不详难度:| 查看答案
如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.

(1)说明:
(2)当点C、点A到y轴距离相等时,求点E坐标.
(3)当的面积为时,求的值.
题型:不详难度:| 查看答案
如图,已知在平面直角坐标系中,四边形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).

(1)求点C的坐标及梯形ABCO的面积;
(2)当点Q在CO边上运动时,求△OPQ的面积S与运动时间t的函数关系式,并写出自变量t的取值范围;
(3)以O,P,Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由.
题型:不详难度:| 查看答案
二次函数y=ax2+bx+c的图象如图所示,则点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

题型:不详难度:| 查看答案
将抛物线y=2x2先沿x轴方向向左平移2个单位,再沿y轴方向向下平移3个单位,所得抛物线的解析式是 _________ 
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.