当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,抛物线y=-x+4x+5交x轴于A、B(以A左B右)两点,交y轴于点C.(1)求直线BC的解析式;(2)点P为抛物线第一象限函数图象上一点,设P点的横坐标...
题目
题型:不详难度:来源:
如图,抛物线y=-x+4x+5交x轴于A、B(以A左B右)两点,交y轴于点C.

(1)求直线BC的解析式;
(2)点P为抛物线第一象限函数图象上一点,设P点的横坐标为m,△PBC的面积为S,求S与m的函数关系式;
(3)在(2)的条件下,连接AP,抛物线上是否存在这样的点P,使得线段PA被BC平分,如果不存在,请说明理由;如果存在,求点P的坐标.
答案
(1) y=   (2) S=   (3)存在,P(2,9)或P(3,8)
解析

试题分析:(1)令y=0,解关于x的一元二次方程即可得到点A、B的坐标,再令x=0求出点C的坐标,设直线BC解析式为y=kx+b(k≠0),利用待定系数法求一次函数解析式解答;
(2)过点P作PH⊥x轴于H,交BC于F,根据抛物线和直线BC的解析式表示出PF,再根据SPBC=SPCF+SPBF整理即可得解;
(3)设AP、BC的交点为E,过点E作EG⊥x轴于G,根据垂直于同一直线的两直线平行可得EG∥PH,然后判断出△AGE和△AHP相似,根据相似三角形对应边成比例可表示出EG、HG,然后表示出BG,根据OB=OC可得∠OCB=∠OBC=45°,再根据等角对等边可得EG=BG,然后列出方程求出m的值,再根据抛物线解析式求出点P的纵坐标,即可得解.
试题解析:(1)当y=0时,x1=5,x2=-1,
∵A左B右,
∴A(-1,0),B(5,O)
当x=0时,y=5,
∴C(0,5),
设直线BC解析式为y=kx+b,


∴直线BC解析式为:y=
(2)作PH⊥x轴于H,交BC于点F,

P(m,-m2+4m+5),F(m,-m+5)
PF=-m2+5m ,
SPBC=SPCF+SPBF
S=
∴S=
(3)存在点P,
作EG⊥AB于G,PH⊥AB于H,

∴EG∥PH,
∴△AGE∽△AHP,

∵P(m,-m2+4m+5),
EG=
AH=m-(-1)=m+1,   GH=
HB="5-m" ,GB=
∵OC=OB=5,
∴∠OCB=∠OBC=45°,
∴EG=BG,
=
∴m1=2   m2=3,
当m=2时,P(2,9),
当m=3时,P(3,8),
∴存在这样的点P, 使得线段PA被BC平分,P(2,9)或P(3,8).
核心考点
试题【如图,抛物线y=-x+4x+5交x轴于A、B(以A左B右)两点,交y轴于点C.(1)求直线BC的解析式;(2)点P为抛物线第一象限函数图象上一点,设P点的横坐标】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
抛物线y=3x2,y=-3x2,y=x2+3共有的性质是
A.开口向上B.对称轴是y轴
C.都有最高点D.y随x值的增大而增大

题型:不详难度:| 查看答案
将二次函数y=3(x+2)2-4的图象向右平移3个单位,再向上平移1个单位,所得的图象的函数关系式是
A.y=3(x+5)2-5B.y=3(x-1)2-5
C.y=3(x-1)2-3D.y=3(x+5)2-3

题型:不详难度:| 查看答案
图是二次函数y=ax2+bx+c的图象,则a、b、c满足
A.a>0,b>0,c>0B.a>0,b<0,c>0
C.a>0,b>0,c<0D.a>0,b<0,c<0

题型:不详难度:| 查看答案
直线y=ax+c与抛物线y=ax2+c的图象画在同一个直角坐标系中,可能是下面的

题型:不详难度:| 查看答案
将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润则应降价
A.20元B.15元
C.10元D.5元

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.