当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,正方形ABCD的边长为6cm,O是AB的中点,也是抛物线的顶点,OP⊥AB,两半圆的直径分别为OA,OB,抛物线经过C,D两点,且关于OP对称,则图中阴影...
题目
题型:不详难度:来源:
如图,正方形ABCD的边长为6cm,O是AB的中点,也是抛物线的顶点,OP⊥AB,两半圆的直径分别为OA,OB,抛物线经过C,D两点,且关于OP对称,则图中阴影部分的面积为(  )(π取3.14,结果保留两位小数)
A.7.07cm2
B.3.53cm2
C.14.13cm2
D.10.60cm2

答案
B
解析
本题结合正方形的性质考查二次函数的综合应用,注意某个图形无法解答时,常常利用图形平移,利用图形间的和差关系求解.
解:观察阴影部分面积,把OP右边的阴影面积对称到左边,可以得到一个半圆的面积,则s=×=3.53cm2.故选B.
核心考点
试题【如图,正方形ABCD的边长为6cm,O是AB的中点,也是抛物线的顶点,OP⊥AB,两半圆的直径分别为OA,OB,抛物线经过C,D两点,且关于OP对称,则图中阴影】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
某经销商代理销售一种手机,按协议,每卖出一部手机需另交品牌代理费100元,已知该种手机每部进价800元,销售单价为1200元时,每月能卖出100部,市场调查发现,若每部手机每让利50元,则每月可多售出40部.
(1)若每月要获取36000元利润,求让利价
(利润=销售收入-进货成本-品牌代理费)
(2)设让利x元,月利润为y元,写出y与x的函数关系式,并求让利多少元时,月利润最大?
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,已知点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(点P与F、G不重合),作PQ∥y轴与抛物线交于点Q.
(1)若经过B、E、C三点的抛物线的解析式为y=-x2+(2b-1)x+c-5,则b=         ,c=         (直接填空)
(2)①以P、D、E为顶点的三角形是直角三角形,则点P的坐标为         (直接填空)
②若抛物线顶点为N,又PE+PN的值最小时,求相应点P的坐标.
(3)连结QN,探究四边形PMNQ的形状:
①能否成为平行四边形
②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

题型:不详难度:| 查看答案
如果将抛物线向下平移3个单位,那么所得新抛物线的表达式是       
题型:不详难度:| 查看答案
二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中,正确的是(  )
A.abc<0
B.a+c<b
C.b>2a
D.4a>2b﹣c

题型:不详难度:| 查看答案
数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x2+1与y=的交点的横坐标x0的取值范围是(  )
A.0<x0<1
B.1<x0<2
C.2<x0<3
D.﹣1<x0<0

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.