当前位置:初中试题 > 数学试题 > 反比例函数的应用 > 如图,直线y=2x与双曲线y=8x交于点A、E,直线AB交双曲线于另一点B(2m,m),连接EB并延长交x轴于点F.(1)m=______;(2)求直线AB的解...
题目
题型:不详难度:来源:
如图,直线y=2x与双曲线y=
8
x
交于点A、E,直线AB交双曲线于另一点B(2m,m),连接EB并延长交x轴于点F.
(1)m=______;
(2)求直线AB的解析式;
(3)求△EOF的面积;
(4)若点P为坐标平面内一点,且以A,B,E,P为顶点的四边形是平行四边形,请直接写出所有满足条件的点P的坐标.
答案
(1)∵点B(2m,m)在双曲线y=
8
x
上,
∴2m•m=8,解得m=±2,而m>0,
∴m=2.
故答案为2;

(2)m=2,则B点坐标为(4,2),
解方程组





y=2x
y=
8
x





x=-2
y=-4





x=2
y=4

∴A点坐标为(-2,-4),E点坐标为(2,4),
设直线AB的解析式为y=kx+b,
把A(-2,-4),B(4,2)代入得:-2k+b=-4,4k+b=2,解方程组得k=1,b=-2,
∴直线AB的解析式为y=x-2;

(3)设直线EB的解析式为y=kx+b,
把E(2,4),B(4,2)代入得:2k+b=4,4k+b=2,解方程组得k=-1,b=6,
∴直线EB的解析式为y=-x+6,
令y=0,则-x+6=0,得x=6,即F点的坐标为(6,0),
∴△EOF的面积=
1
2
×6×4=12;

(4)满足条件的点P的坐标为(-4,-2)、(0,-6)、(8,10).
核心考点
试题【如图,直线y=2x与双曲线y=8x交于点A、E,直线AB交双曲线于另一点B(2m,m),连接EB并延长交x轴于点F.(1)m=______;(2)求直线AB的解】;主要考察你对反比例函数的应用等知识点的理解。[详细]
举一反三
如图,Rt△OAB的斜边OA在x轴上,点B在第一象限,OA:OB=5:4.边AB的垂直平分线分别交AB、x轴于点C、D,线段CD交反比例函数y=
3
x
的图象于点E.当BC=CE时,以DE为边的正方形的面积是(  )
A.
25
29
B.1C.
30
29
D.
36
29

题型:不详难度:| 查看答案
点P是x轴正半轴上的一个动点,过点P作x轴的垂线PA交双曲线y=
1
x
于点A,连接OA并延长,与双曲线y=
1
x
交于点F,FH垂直于x轴,垂足为点H,连接AH、PF.

(1)如图①,当点A的横坐标为
3
2
时,求四边形APFH的面积.
(2)如图②,当点P在x轴的正方向上运动到点D,过点D作x轴的垂线交双曲线于点B,连接BO并延长,与双曲线y=
1
x
交于点F,FH垂直于x轴,垂足为点H,连接BH、DF,求四边形BDFH的面积.
(3)若双曲线的解析式为y=
k
x
,四边形BDFH的面积为______.(直接写出答案)
题型:不详难度:| 查看答案
如图,反比例函数y=
k
x
的图象经过点P,则k=______.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,点A、B分别在x轴和y轴的正半轴上,OA=2,
OB=4,P为线段AB的中点,反比例函数y=
k
x
的图象经过P点,Q是该反比例函数图象上异于点P的另一点,经过点Q的直线交x轴于点C,交y轴于点D,且QC=QD.下列结论:①k=2;②S△COD=4;③OP=OQ;④ADCB.其中正确结论的个数是(  )
A.1B.2C.3D.4

题型:不详难度:| 查看答案
如图,反比例函数y=
k
x
(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.