当前位置:初中试题 > 数学试题 > 反比例函数定义 > 如图,直线y=x与双曲线y=相交于A、B两点,BC⊥x轴于点C(﹣4,0).(1)求A、B两点的坐标及双曲线的解析式;(2)若经过点A的直线与x轴的正半轴交于点...
题目
题型:不详难度:来源:
如图,直线y=x与双曲线y=相交于A、B两点,BC⊥x轴于点C(﹣4,0).

(1)求A、B两点的坐标及双曲线的解析式;
(2)若经过点A的直线与x轴的正半轴交于点D,与y轴的正半轴交于点E,且△AOE的面积为10,求CD的长.
答案
(1)y=  (2)9
解析

试题分析:(1)求出B的横坐标,代入y=x求出y,即可得出B的坐标,把B的坐标代入y=求出y=,解方程组即可得出A的坐标;
(2)设OE=x,OD=y,由三角形的面积公式得出xy﹣y•1=10,x•4=10,求出x、y,即可得出OD=5,求出OC,相加即可.
解:(1)∵BC⊥x,C(﹣4,0),
∴B的横坐标是﹣4,代入y=x得:y=﹣1,
∴B的坐标是(﹣4,﹣1),
∵把B的坐标代入y=得:k=4,
∴y=
∵解方程组得:
∴A的坐标是(4,1),
即A(4,1),B(﹣4,﹣1),反比例函数的解析式是y=
(2)设OE=x,OD=y,
由三角形的面积公式得:xy﹣y•1=10,x•4=10,
解得:x=5,y=5,
即OD=5,
∵OC=|﹣4|=4,
∴CD的值是4+5=9.
点评:本题考查了三角形的面积、一次和与反比例函数的交点问题的应用,题目比较好,但是一道比较容易出错的题目.
核心考点
试题【如图,直线y=x与双曲线y=相交于A、B两点,BC⊥x轴于点C(﹣4,0).(1)求A、B两点的坐标及双曲线的解析式;(2)若经过点A的直线与x轴的正半轴交于点】;主要考察你对反比例函数定义等知识点的理解。[详细]
举一反三
已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2

(1)求一次函数的解析式;
(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.
题型:不详难度:| 查看答案
如图,反比例函数y=(x>0)与正比例函数y=k2x的图象分别交矩形OABC的BC边于M(4,1),B(4,5)两点.

(1)求反比例函数和正比例函数的解析式;
(2)若一个点的横坐标、纵坐标都是整数,则称这个点为格点.请你写出图中阴影区域BMN(不含边界)内的所有格点关于y轴对称的点的坐标.
题型:不详难度:| 查看答案
已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.

(1)求该反比例函数的解析式;
(2)求直线AB的解析式.
题型:不详难度:| 查看答案
若函数y=(m+1)是反比例函数,则m的值为(  )
A.m=﹣2B.m=1C.m=2或m=1D.m=﹣2或﹣1

题型:不详难度:| 查看答案
是反比例函数,则k必须满足(  )
A.k≠3B.k≠0
C.k≠3或k≠0D.k≠3且k≠0

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.