当前位置:初中试题 > 数学试题 > 待定系数法求一次函数解析式 > 如图,四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请解答下列问题:(1)如图1,当点P在线段BC的垂直平分线MN上(对角...
题目
题型:海南省竞赛题难度:来源:
如图,四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请解答下列问题:
(1)如图1,当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;
(2)如图2,当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2
(3)若矩形ABCD在平面直角坐标系xOy中,点B的坐标为(1,1),点D的坐标为(5,3),如图3所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.
答案

解:(1)作BC的中垂线MN,在MN上取点P,
连接PA、PB、PC、PD,如图1所示,
∵MN是BC的中垂线,
∴PA=PD,PC=PB,
又∵四边形ABCD是矩形,
∴AC=DB,

∴△PAC≌△PDB(SSS);
(2)证明:过点P作KG∥BC,如图2,
∵四边形ABCD是矩形,
∴AB⊥BC,DC⊥BC,
∴AB⊥KG,DC⊥KG,
∴在Rt△PAK中,PA2=AK2+PK2
同理,PC2=CG2+PG2,PB2=BK2+PK2,PD2=+DG2+PG2
PA2+PC2=AK2+PK2+CG2+PG2,PB2+PD2=BK2+PK2+DG2+PG2
AB⊥KG,DC⊥KG,AD⊥AB,可证得四边形ADGK是矩形,
∴AK=DG,同理CG=BK,
∴AK2=DG2,CG2=BK2
∴PA2+PC2=PB2+PD2
(3)∵点B的坐标为(1,1),点D的坐标为(5,3),
∴BC=4,AB=2,
∴S矩形ABCD=4×2=8,
直线HI垂直BC于点I,交AD于点H,
当点P在直线AD与BC之间时,
S△PAD+S△PBC=BC·HI=4,
即x+y=4,因而y与x的函数关系式为y=4﹣x;
当点P在直线AD上方时,
S△PBC﹣S△PAD=BC·HI=4,
因而y与x的函数关系式为y=4+x;
当点P在直线BC下方时,
S△PAD﹣S△PBC=BC·HI=4,
y与x的函数关系式为y=x﹣4.


 



图1






图2




图3
   

核心考点
试题【如图,四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请解答下列问题:(1)如图1,当点P在线段BC的垂直平分线MN上(对角】;主要考察你对待定系数法求一次函数解析式等知识点的理解。[详细]
举一反三
某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
题型:湖南省月考题难度:| 查看答案
设关于x的一次函数y=a1x+b1与y=a2x+b2,则称函数y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)为此两个函数的生成函数.
(1)当x=1时,求函数y=x+1与y=2x的生成函数的值;
(2)若函数y=a1x+b1与y=a2x+b2的图象的交点为P,判断点P是否在此两个函数的生成函数的图象上,并说明理由.
题型:浙江省竞赛题难度:| 查看答案
绿都超市对顾客实行优惠购物,规定如下:
(1)若一次购物少于200元,则不予优惠;
(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;
(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折优惠.小明两次去该超市购物,分别付款198元和554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?
题型:贵州省竞赛题难度:| 查看答案
如图,一次函数的图象过点P(2,3),交x轴的正半轴与A,交y轴的正半轴与B,求△AOB面积的最小值.
题型:甘肃省竞赛题难度:| 查看答案
如图为某游乐场电车轨道的一部分ABC的图象,AB为线段,BC为反比例函数的一部分,已知A(10,1)、B(8,2)、C(2,yc).过轨道图象上一点分别作x、y轴垂线才能固定轨道,若垂线段的和(用S表示)取最小值的点称为最佳支撑点.
(1)求直线AB的解析表示式及k值.
(2)求轨道图象最佳支撑点的坐标.
题型:广东省竞赛题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.