当前位置:初中试题 > 数学试题 > 待定系数法求一次函数解析式 > 如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x...
题目
题型:广东省期末题难度:来源:
如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合.
(1)求点F的坐标和∠GEF的度数;
(2)求矩形ABCD的边DC与BC的长;
(3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t(0≦t≦6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围.
答案
解:(1)由题意得
解得x=﹣2,y=4,
∴F点坐标:(﹣2,4);
过F点作直线FM垂直X轴交x轴于M,ME=MF=4,△MEF是等腰直角三角形,∠GEF=45°;(2)由图可知G点的坐标为(﹣4,0),则C点的横坐标为﹣4,
∵点C在直线l1上,
∴点C的坐标为(﹣4,6),
∵由图可知点D与点C的纵坐标相同,且点D在直线l2上,
∴点D的坐标为(﹣1,6),
∵由图可知点A与点D的横坐标相同,且点A在x轴上,
∴点A的坐标为(﹣1,0),
∴DC=|﹣1﹣(﹣4)|=3,BC=6;
(3)∵点E是l1与x轴的交点,
∴点E的坐标为(2,0),
S△GFE===12,
若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,
当t秒时,移动的距离是1×t=t,则B点的坐标为(﹣4+t,0),A点的坐标为(﹣1+t,0);①在运动到t秒,若BC边与l2相交设交点为N,AD与l1相交设交点为K,
那么﹣4≦﹣4+t≦﹣2,即0≦t≦2时.
N点的坐标为(﹣4+t,2t),K点的坐标为(﹣1+t,3﹣t),
s=S△GFE﹣S△GNB﹣S△AEK=12=
②在运动到t秒,若BC边与l1相交设交点为N,AD与l1相交设交点为K,
那么﹣2<﹣4+t且﹣1+t≦3,即2<t≦4时.
N点的坐标为(﹣4+t,6﹣t),K点的坐标为(﹣1+t,3﹣t),
s=S梯形BNKA==
③在运动到t秒,若BC边与l1相交设交点为N,AD与l1不相交,
那么﹣4+t≦3且﹣1+t>3,即4<t≦7时.
N点的坐标为(﹣4+t,6﹣t),
s=S△BNE==
答:(1)F点坐标:(﹣2,4),∠GEF的度数是45°;
(2)矩形ABCD的边DC的长为3,BC的长为6;
(3)s关于t的函数关系式
核心考点
试题【如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x】;主要考察你对待定系数法求一次函数解析式等知识点的理解。[详细]
举一反三
如图,直线l1过点A(0,4),点D(4,0),直线l2:y=x+1与x轴交于点C,两直线l1l2相交于点B.
(1)求直线l1的解析式和点B的坐标;
(2)求△ABC的面积.
题型:四川省期末题难度:| 查看答案
1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/千克.经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克.
(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑,按此价格销售,获得的总毛利润是多少元(总毛利润=销售总收入﹣库存处理费)?
(2)设椪柑销售价格定为x(0<x≤2)元/千克时,平均每天能售出y千克,求y关于x的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?
题型:四川省期末题难度:| 查看答案
已知,矩形ABCO在直角坐标系的第一象限内,如图,点A、C的坐标分别为(1,0)、(0,3),现将矩形ABCO绕点B逆时针旋转得矩形A"BC"O",使点O"落在x轴的正半轴上,且AB与C"O"交于点D,求:
(1)点O"的坐标;
(2)线段AD的长度;
(3)经过两点O"、C"的直线的函数表达式.
题型:广东省期末题难度:| 查看答案
一位农民带上若干千克自产的土豆进城出售.为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图,结合图象回答下列问题:
(1)农民自带的零钱是多少?
(2)求出降价前每千克的土豆价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
题型:广东省期末题难度:| 查看答案
一次函数y=kx+b(k≠0)的图象经过点(1,6)、(﹣3,﹣2)
①试求出该一次函数的解析式;
②画出这个一次函数的图象;
③图象与x轴交于点A (     ) ,与y轴交于点B (     ) ,则△AOB的面积为(     );
④观察图象,当x(     )时,y>0.
题型:广东省期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.