当前位置:初中试题 > 数学试题 > 待定系数法求一次函数解析式 > 如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,点D在AB边上,将△CBD沿CD翻折,点B恰好落在O...
题目
题型:不详难度:来源:
如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
(1)求点E的坐标;
(2)求折痕CD所在直线的解析式.
答案
(1)如图,∵四边形ABCD是长方形,
∴BC=OA=10,∠COA=90°.
由折叠的性质知CE=CB=10.
∵OC=6,
∴在直角△COE中,由勾股定理得OE=


CE2-OC2
=


102-62
=8

∴E(8,0);

(2)设CD所在直线的解析式为y=kx+b(k≠0).
∵C(0,6).
∴b=6.
设BD=DE=x.
∴AD=6-xAE=OA-OE=2,
由勾股定理得AD2+AE2=DE2(6-x)2+22=x2
x=
10
3

AD=6-
10
3
=
8
3

∴D(10,
8
3
),
代入y=kx+b 得,
k=-
1
3

故CD所在直线的解析式为:y=-
1
3
x+6

核心考点
试题【如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,点D在AB边上,将△CBD沿CD翻折,点B恰好落在O】;主要考察你对待定系数法求一次函数解析式等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60°的角,且交y轴于C点,以点O213,5)为圆心的圆与x轴相切于点D.
(1)求直线l的解析式;
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.
题型:不详难度:| 查看答案
如图,已知一次函数y=-
3
4
x+3
的图象与x轴,y轴分别相交于A,B两点,点C在AB上以每秒1个单位的速度从点B向点A运动,同时点D在线段AO上以同样的速度从点A向点O运动,运动时间用t(单位:秒)表示.
(1)求AB的长;
(2)当t为何值时,△ACD与△ABO相似?并直接写出此时点C的坐标.
题型:不详难度:| 查看答案
已知A点坐标为A(


2
,0
)点B在直线y=-x上运动,当线段AB最短时,B点坐标(  )
A.(0,0)B.(


2
2
,-


2
2
C.(1,-1)D.(-


2
2


2
2
题型:不详难度:| 查看答案
甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:
(1)请你在A,B,C,D,E五个点任意选择一个点解释它的实际意义;
(2)求线段DE对应的函数关系式;
(3)当轿车出发1h后,两车相距多少千米;
(4)当轿车出发几小时后两车相距30km?
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,边长为4的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.
(1)当∠BAO=45°时,求点P的坐标;
(2)无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P是否在直线y=x上?如果在,请给出证明;如果不在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.