当前位置:初中试题 > 数学试题 > 一次函数定义 > 如图,∠MBN的两边BM,BN上分别有两点A、C,满足BC=2BA,作□ABCD,取AD的中点E,作CF⊥CD,CF与AB所在的直线交于点F。(1)当∠B=时,...
题目
题型:不详难度:来源:
如图,∠MBN的两边BM,BN上分别有两点A、C,满足BC=2BA,作□ABCD,取AD的中点E,作CF⊥CD,CF与AB所在的直线交于点F。
(1)当∠B=时,直接写出∠DEF的度数;
(2)在射线BM绕B点旋转的过程中,若∠B=,∠DEF=<X<<Y<),求:Y关于X的函数解析式及相应自变量X的取值范围,           
答案
(1)∠DEF=°;…………2分
    (2)对∠B的大小分三种情况讨论如下:

①当时,点F在线段AB上(见图7-1)。
延长FE,并与CD的延长线交于点G,记∠AFE=
∵ ABCD,∴ AB∥CD,AD=BC,AB=CD,∠3=∠B=x°。
∴∠DGE=∠AFE=
可得△AEF≌△DEG。
∴ EF=EG,CE为Rt△CFG斜边的中线。
∴ EF=EG,∠1=∠G=
∵ BC=2AB,
∴ 2DE=2CD,DE=CD。
∴等腰三角形△CDE中,∠1=
∴ 
…………3分
<1>当∠B=90°时,点F与点B重合,(见图7-2) 此时∠DEF=135°,
所以仍成立。…………4分
<2>当∠B=60°时,点F与点A重合,∠DEF=180°不合题意(见图7-3)。

②当时,点F在线段AB的延长线上(见图7-4)。
与①同理可得。…………6分
  
③当时,点F在线段BA的延长线上(如图7-5)。
与①同理可得CE为Rt△CFG斜边的中线,EC=EG,DE=CD。
∴△CEG和△CDE为等腰三角形。
在等腰三角形△CEG中,∠1=180°-2∠2,在等腰三角形△CDE中,
∴∠DEF=180°-∠3=180°-(∠CED-∠1)=360°-3∠2=。…………7分
综上所述,当时,
时,
解析
(1)当∠B=时,四边形ABCD是矩形,F点和B点重合,从而得出∠DEF的度数;
(2)分三种情况进行讨论。
核心考点
试题【如图,∠MBN的两边BM,BN上分别有两点A、C,满足BC=2BA,作□ABCD,取AD的中点E,作CF⊥CD,CF与AB所在的直线交于点F。(1)当∠B=时,】;主要考察你对一次函数定义等知识点的理解。[详细]
举一反三
如图,一次函数的图象经过A、B两点,则关于x的不等式的解集是         
题型:不详难度:| 查看答案
为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过84万元,预计二期工程完成后每月将产生不少于1300吨污水.
(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?
(2)请你求出用于二期工程的污水处理设备的所有购买方案;
(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)
题型:不详难度:| 查看答案
如图,一次函数的图象与轴的交点坐标为(2,0),则下列说法:
 
的增大而减小;
>0;
③关于的方程的解为x=2;
④不等式kx+b>0的解集是x>2.
其中说法正确的有      (把你认为说法正确的序号都填上).
题型:不详难度:| 查看答案
已知一次函数 (b为常数)的图象与反比例函数的图象相交于点P(1,a).
(I) 求a的值及一次函数的解析式;
(II) 当x>1时,试判断的大小.并说明理由.
题型:不详难度:| 查看答案
某工厂设计了一款产品,成本价为每件20元.投放市场进行试销,得到如下数据:
售价(元∕件)
……
30
40
50
60
……
日销售量(件)
……
500
400
300
200
……
(I)若日销售量(件)是售价(元∕件)的一次函数,求这个一次函数解析式;
(II)设这个工厂试销该产品每天获得的利润(利润=销售价-成本价)为W(元),当售价定为每件多少元时,工厂每天获得的利润最大?最大利润是多少元?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.