当前位置:初中试题 > 数学试题 > 一次函数定义 > 给出下列命题:①若m=n+1,则1﹣m2+2mn﹣n2=0;②对于函数y=kx+b(k≠0),若y随x的增大而增大,则其图象不能同时经过第二、四象限;③若a、b...
题目
题型:不详难度:来源:
给出下列命题:①若m=n+1,则1﹣m2+2mn﹣n2=0;②对于函数y=kx+b(k≠0),若y随x的增大而增大,则其图象不能同时经过第二、四象限;③若a、b(a≠b)为2、3、4、5这四个数中的任意两个,则满足2a﹣b>4的有序数对(a,b)共有5组.其中所有正确命题的序号是___________
答案
①②③
解析

试题分析:要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.
①若m=n+1,则1-m2+2mn-n2=(1+m-n)(1-m+n)=0,②对于函数y=kx+b(k≠0),若y随x的增大而增大,则其图象不能同时经过第二、四象限,③若a、b(a≠b)为2、3、4、5这四个数中的任意两个,则满足2a-b>4的有序数组(a,b)共有5组,均正确,所以正确命题的序号是①②③.
点评:正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
核心考点
试题【给出下列命题:①若m=n+1,则1﹣m2+2mn﹣n2=0;②对于函数y=kx+b(k≠0),若y随x的增大而增大,则其图象不能同时经过第二、四象限;③若a、b】;主要考察你对一次函数定义等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿OC向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒.

(1)求线段BC的长;
(2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围:
(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE′F′,使点E的对应点E′落在线段AB上,点F的对应点是F′,E′F′交x轴于点G,连接PF、QG,当t为何值时,?
题型:不详难度:| 查看答案
如下图,在平面直角坐标系中,一次函数的图像与反比例函数的图像交于二、四象限的A、B两点,与x轴交于C点。已知A(-2,m),B(n,-2),,则此一次函数的解析式为     .

题型:不详难度:| 查看答案
一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲
地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图
所示:

(1)根据图像,直接写出y1、y2关于x的函数关系式;
(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;
(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.
题型:不详难度:| 查看答案
若正比例函数y=kx的图象经过点(1,2),则k的值为
A.B.-2C.D.2

题型:不详难度:| 查看答案
如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=-x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是   

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.