当前位置:初中试题 > 数学试题 > 一次函数定义 > 在平面直角坐标系xOy中,一次函数y=-x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到...
题目
题型:不详难度:来源:
在平面直角坐标系xOy中,一次函数y=-x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到达点B后立刻以原来的速度沿BO返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点A时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.

答案
(1)P(,﹣x+3);
(2)不存在实数t,使得△BPQ的面积大于17;
(3),t=时,O在l的垂直平分线上.
解析

试题分析:(1)表示边长首要就是表示出来,根据函数性质及线段成比例等性质易表示出,PD,PC的长,即得坐标;
(2)讨论面积一般是计算底和高,然后表示出面积解析式,进而根据二次函数性质讨论最值或范围.而第一问求得OA=3,OB=4,易得SAOB仅为6,而SBQP≤SAOB,所以定不存在实数t,使得面积大于17;
(3)垂直平分线上的点到两边距离相等,利用这个性质,我们只要表示出OP,和OQ即可.但讨论时注意Q点的运动时个往返的过程,要有两种情形.
试题解析:(1)如图,过点P作PC⊥OA于C,PD⊥OB于D.

∵y=﹣x+3的图象与x轴交于点A,与y轴交于点B
∴A(4,0),B(0,3),
在Rt△BDP中,
∵OB=3,OA=4,
∴AB=5.
∵BP∥OA,

∵BP=t,


∵由点P过AB,
∴将x=代入y=﹣x+3,得y=﹣x+3,
∴P(,﹣x+3);
(2)不存在实数t,使得△BPQ的面积大于17.
∵Q、P在OB、OA上运动,
∴SBQP≤SAOB
∵SAOB=OA·OB==6,
∴SBQP≤6<17,
∴不存在实数t,使得△BPQ的面积大于17;
(3)∵P(,﹣x+3),
∴OC=,PC=﹣x+3,
∴OP2=(2+(﹣x+3)2
∵O在l的垂直平分线上,
∴OP=OQ.
①当0<t≤3时,OP=t,则t2=(2+(﹣t+3)2,解得 t=,符合要求.
②当3<t≤5时,
∵BQ=t﹣3,
∴OQ=3﹣(t﹣3)=6﹣t,
∴(6﹣t)2=(2+(﹣t+3)2
解得 t=,符合要求.
综上所述,t=时,O在l的垂直平分线上.
核心考点
试题【在平面直角坐标系xOy中,一次函数y=-x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到】;主要考察你对一次函数定义等知识点的理解。[详细]
举一反三
一次函数y=ax+b与反比例函数y=的图象如图所示,则(  )
A.a>0,b>0.c>0
B.a<0,b<0.c<0
C.a<0,b>0.c>0
D.a<0,b<0.c>0

题型:不详难度:| 查看答案
以二元一次方程的解为坐标的点在平面直角坐标系中的图象是一条直线。根据这个结论,在同一平面直角坐标系中画出二元一次方程组中两个二元一次方程的图象,并根据图象写出这个二元一次方程组的解。
题型:不详难度:| 查看答案
已知一次函数y=kx+b中,k<0,b<0,则函数不经过下列选项中的那个象限(  )
A.第一象限B.第二象限C.第三象限D.第四象限

题型:不详难度:| 查看答案
将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度与注水时间的函数图象大致为(   )


题型:不详难度:| 查看答案
已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象.
(1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围;
(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.