当前位置:初中试题 > 数学试题 > 一次函数定义 > 如图,点A(1,6)和点M(m,n)都在反比例函数y=(x>0)的图象上,(1)k的值为    ;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作...
题目
题型:不详难度:来源:
如图,点A(1,6)和点M(m,n)都在反比例函数y=(x>0)的图象上,
(1)k的值为    
(2)当m=3,求直线AM的解析式;
(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.

答案
(1)6
(2)直线AM解析式为y=﹣2x+8;
(3)直线BP与直线AM的位置关系为平行,理由见解析
解析

试题分析:(1)将A坐标代入反比例解析式求出k的值即可;
(2)由k的值可得反比例解析式,将x=3代入反比例解析式求出y的值,从而确定M坐标,由待定系数法即可求出直线AM解析式;
(3)由MP垂直于x轴,AB垂直于y轴,得到M与P横坐标相同,A与B纵坐标相同,表示出B与P坐标,分别求出直线AM与直线BP斜率,由两直线斜率相等,得到两直线平行.
试题解析:(1)将A(1,6)代入反比例解析式得:k=6;
(2)将x=3代入反比例解析式y=得:y=2,即M(3,2),
设直线AM解析式为y=ax+b,
把A与M代入得:
解得:a=﹣2,b=8,
∴直线AM解析式为y=﹣2x+8;
(3)直线BP与直线AM的位置关系为平行,理由为:
当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,
∵A(1,6),M(m,n),且mn=6,即n=
∴B(0,6),P(m,0),
∴k直线AM=====﹣,k直线BP==﹣,即k直线AM=k直线BP
则BP∥AM.
核心考点
试题【如图,点A(1,6)和点M(m,n)都在反比例函数y=(x>0)的图象上,(1)k的值为    ;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作】;主要考察你对一次函数定义等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.
(1)求点C的坐标;
(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.

题型:不详难度:| 查看答案
甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.
(1)分别求出y1,y2与x之间的关系式;
(2)当甲、乙两个商场的收费相同时,所买商品为多少件?
(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.
题型:不详难度:| 查看答案
一次函数y=﹣2x+1的图象不经过下列哪个象限(  )
A.第一象限B.第二象限C.第三象限D.第四象限

题型:不详难度:| 查看答案
如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.
(1)求一次函数和反比例函数的解析式;
(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?

题型:不详难度:| 查看答案
汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是(     )

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.