当前位置:初中试题 > 数学试题 > 函数概念 > 对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C 的关联点。已知点D(,),E(0,-2),F...
题目
题型:不详难度:来源:
对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C 的关联点。已知点D(),E(0,-2),F(,0)

(1)当⊙O的半径为1时,
①在点D,E,F中,⊙O的关联点是       
②过点F作直线交y轴正半轴于点G,使∠GFO=30°,若直线上的点P(m,n)是⊙O的关联点,求m的取值范围;
(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围。
答案
(1)①D,E②0≤m≤(2)r≥1
解析
解:(1)①D,E。
②由题意可知,若P要刚好是⊙C的关联点,需要点P到⊙C的两条切线PA和PB之间所夹的角为60°。
由图2可知∠APB=60°,则∠CPB=30°,

连接BC,则
∴若P点为⊙C的关联点,则需点P到圆心的距离d满足0≤d≤2r。
由(1),考虑临界点位置的P点,
如图3,

点P到原点的距离OP=2×1=2,
过点O作x轴的垂线OH,垂足为H,

∴∠OGF=60°。
∴OH=OGsin60°=
∴∠OPH=60°。可得点P1与点G重合。
过点P2作P2M⊥x轴于点M,可得∠P2OM=30°,
∴OM=OP2cos30°=
∴若点P为⊙O的关联点,则P点必在线段P1P2上。
∴0≤m≤
(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点。
考虑临界情况,如图4,

即恰好E、F点为⊙K的关联时,则KF=2KN=EF=2,此时,r=1。
∴若线段EF上的所有点都是某个圆的关联点,这个圆的半径r的取值范围为r≥1。
(1)①根据关联点的定义,得出E点是⊙O的关联点,进而得出F、D,与⊙O的关系:
如图1所示,过点E作⊙O的切线设切点为R,

∵⊙O的半径为1,∴RO=1。
∵EO=2,∴∠OER=30°。
根据切线长定理得出⊙O的左侧还有一个切点,使得组成的角等于30°。
∴E点是⊙O的关联点。
∵D(),E(0,-2),F(2,0),
∴OF>EO,DO<EO。
∴D点一定是⊙O的关联点,而在⊙O上不可能找到两点使得组成的角度等于60°。故在点D、E、F中,⊙O的关联点是D,E。
②若P要刚好是⊙C的关联点,需要点P到⊙C的两条切线PA和PB之间所夹的角为60°,进而得出PC的长,进而得出点P到圆心的距离d满足0≤d≤2r,再考虑临界点位置的P点,进而得出m的取值范围。
(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点;再考虑临界情况,即恰好E、F点为⊙K的关联时,则KF=2KN=EF=2,即可得出圆的半径r的取值范围。
核心考点
试题【对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C 的关联点。已知点D(,),E(0,-2),F】;主要考察你对函数概念等知识点的理解。[详细]
举一反三
在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则的值为
A.33B.-33C.-7D.7

题型:不详难度:| 查看答案
已知二次函数的图像如图所示,则一次函数的大致图像可能是
 
A.B.C.D.

题型:不详难度:| 查看答案
在同一直线坐标系中,若正比例函数y=k1x的图像与反比例函数的图像没有公共点,则
A.k1+k2<0B.k1+k2>0C.k1k2<0D.k1k2>0

题型:不详难度:| 查看答案
如图,在梯形ABCD中,AD//BC,AB=DC,AC与BD相交于点P。已知A(2, 3),B(1, 1),D(4, 3),则点P的坐标为(              )。

题型:不详难度:| 查看答案
小丽驾车从甲地到乙地。设她出发第x min时的速度为y km/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系。

(1)小丽驾车的最高速度是       km/h;
(2)当20£x£30时,求y与x之间的函数关系式,并求出小丽出发第22 min时的速度;
(3)如果汽车每行驶100 km耗油10 L,那么小丽驾车从甲地到乙地共耗油多少升?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.