当前位置:初中试题 > 数学试题 > 有理数的运算 > x1、x2、y1、y2满足x12+x22=2,x2y1-x1y2=1,x1y1+x2y2=3.则y12+y22=______....
题目
题型:填空题难度:一般来源:不详
x1、x2、y1、y2满足x12+x22=2,x2y1-x1y2=1,x1y1+x2y2=3.则y12+y22=______.
答案
令x1=


2
sinθ,x2=


2
cosθ,
又知x2y1-x1y2=1,x1y1+x2y2=3,







2
cosθy1-


2
sinθy2= 1 


2
sinθy1+


2
cosθ y2=3

解得:


2
y1=cosθ+3sinθ,


2
y2=3cosθ-sinθ,
故y12+y22=5.
故答案为5.
核心考点
试题【x1、x2、y1、y2满足x12+x22=2,x2y1-x1y2=1,x1y1+x2y2=3.则y12+y22=______.】;主要考察你对有理数的运算等知识点的理解。[详细]
举一反三
已知
ab
a+b
=2
ac
a+c
=4
cb
c+b
=3
.则a=______,b=______ c=______.
题型:填空题难度:一般| 查看答案
若a、b、c都是有理数,且a+b+c=0,a3+b3+c3=0,求代数式a5+b5+c5的值.
题型:解答题难度:一般| 查看答案
若实数a、b、c满足a+b+c=5,bc+ca+ab=7,abc=2,则a3+b3+c3=______.
题型:填空题难度:简单| 查看答案
已知
m+9n
9m+5n
=
P
Q
P+aQ
bP+cQ
=
m+n
5m-12n
,其中a,b,c为常数,使得凡满足第一式的m,n,P,Q,也满足第二式,则a+b+c=______.
题型:填空题难度:简单| 查看答案
已知x+y=1,求代数式x3+y3+3xy的值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.