百科
待定系数法求一次函数解析式
试题举例
用待定系数法求过点M(0,-1),N(1,2)的一次函数解析式.
设函数解析式为y=kx+b (k≠0)
当x=0时,y=-1
所以-1=b
当x=1时,y=2
所以2=k+b
得k=3
b=-1
所以:解析式为y=3x-1
这种方法就是待定系数法
相关试题
已知抛物线L的解析式为(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c),我们称以M为顶点,对称轴是y轴且过P点的抛物线为抛物线L的伴随抛物线,直线PM为抛物线L的伴随直线,请写出抛物线的伴随抛物线的解析式( ),伴随直线的解析式( )。 已知一次函数的图象经过(3,5)和(-4,-9)两点。
(1)求这个一次函数的解析式;
(2)画出这个一次函数的图象;
(3)若点(a,2)在这个函数图象上,求a的值。已知A(5,5),B(2,4),M是x轴上一动点,求使得MA+MB最小时的点M的坐标。 某市的A县和B县春季育苗,急需化肥分别为90吨和60吨,该市的C县和 D县分别储存化肥100吨和50吨,全部调配给A县和B县,已知C、D两县运化肥到A、B两县的运费(元/吨)如下表所示 (1)设C县运到A县的化肥为x吨,求总运费W(元)与x(吨)的函数解析式,并写出自变量x的取值范围;
(2)求最低总运费,并说明总运费最低时的运送方案。甲乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留1小时后按原路以另速度匀速返回,直到两车相遇.已知乙车的速度为60千米/小时,两车之间的距离y(千米)与乙车行驶时间x(小时)关系如图所示, (1)请在图中括号内填上正确的值,并求出甲车从A地到B地点行驶速度
(2)求从甲车返回到与乙车相遇的过程中y与x之间的函数关系式,并写出x的取值范围
(3)求甲车返回时的行驶速度及A,B两地之间的距离如图,在平面直角坐标系中,直线y=kx+1分别交x轴、y 轴于点A、B,过点B作BC⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交轴于点x E,过点E作EF⊥DE交y轴于点F。已知点A恰好是线段EC的中点,那么线段EF的长是 [ ] A.
B.
C.
D.4全自动洗衣机在洗涤衣服时,要经历进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分)之间的关系如折线图所示,根据图象解答下列问题: (1)洗衣机的进水时间是( )分钟,清洗时洗衣机中的水量是( )升;
(2)已知洗衣机的排水速度为每分钟19升。
①求排水时y与x之间的关系式;
②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量。已知一次函数y=mx-4与正比例函数y=nx的图象都经过点A(2,-1)
(1)分别求出这两个函数的解析式;
(2)求(1)中的一次函数图象与两个坐标轴围成的三角形的面积。列方程或方程组解应用题:
为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持。 根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时。 小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了。已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米?武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇。冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变。
(1)请直接写出冲锋舟从A地到C地所用的时间;
(2)求水流的速度;
(3)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇.已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数关系式为y= -x+11,假设群众上下船的时间不计,求冲锋舟在距离A地多远处与救生艇第二次相遇?今年的全国助残日这天,某单位的青年志愿者到距单位6千米的福利院参加“爱心捐助活动”。一部分人步行,另一部分人骑自行车,他们沿相同的路线前往。如图,l1、l2分别表示步行和骑自行车的人前往目的地所走的路程y(千米)随时间x(分钟)变化的函数图象。
(1)分别求l1、l2的函数表达式;
(2)求骑车的人用多长时间追上步行的人.“一方有难,八方支援”。在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点,按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满,根据右表提供的信息,解答下列问题: (1)设装运食品的车辆数为x,装运药品的车辆数为y,求y与x的函数关系式;
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费。某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.
(1)分别写出该公司的两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式.
(2)当购买量在什么范围内时,选择哪种方案付款较少?说明理由.一个函数具有下列性质:①图像经过点(-1,2);②函数值y随自变量x的增大而增大.请你写出一个满足上述两条性质的函数解析式可以是( )(只要求写一个即可)。 在“国庆”长假期间,小明一家人到我剑川县千狮山景点来旅游,为庆祝国庆,千狮山景点的门票有以下两种优惠方案:(千狮山景点门票为30元 / 人)方案一:有一人买全票,其余各人按5折优惠;方案二:全部按全票的6折优惠;
(1)请你写出方案一、 方案二小明一家人的门票费Y1、Y2与他们去的人数x之间的函数关系式;
(2)请你就小明一家去的人数来进行讨论选用哪一种方案较为省钱?如图,已知一次函数y= -x+3的图象与x轴,y轴分别相交于A,B两点,点C在AB上以每秒1个单位的速度从点A向点B运动,同时点D在线段AO上以同样的速度从点O向点A运动,运动时间用t(单位:秒)表示。
(1)求AB的长;
(2)当t为何值时,△ACD与△AOB 相似?并写出此时点C的坐标;如图,已知二次函数y=ax2-2ax+3(a<0)的图像与x轴的负半轴交于点A,与y轴的正半轴交于点B,顶点为P,且OB=3OA,一次函数y=kx+b的图像经过点A、点B。
(1)求一次函数的解析式;
(2)求顶点P的坐标;
(3)平移直线AB使其过点P,如果点M在平移后的直线上,且tan∠OAM=,求点M的坐标。某校准备组织290名学生进行野外考察活动,行李共有100件。学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李。
(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;
(2)如果甲、乙两种汽车每辆的租车费用分别为2000元和1800元,请你选择最省钱的一种租车方案。已知某函数的图象经过点A (1 , 2) ,且函数y的值随自变量x的值的增大而减小, 请你写出一个符合条件的函数表达式( )。 (1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米
①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围;(图一) ②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离。但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度。 (图二) (2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定……比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办。过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜。根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图.(实线表示乌龟,虚线表示兔子) (图三) 如图,反比例函数的图像与一次函数的图像交于点A(m,2),点 B(-2, n ),一次函数图像与y轴的交点为C。 (1)求一次函数解析式;
(2)求△AOB的面积。
(3)在x轴上有一点P,使得△OAP为等腰三角形,请直接写出符合要求的所有P点坐标.(不必写计算过程 )如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO将纸片翻折后,点B恰好落在x轴上,记为D,折痕为CE,已知tan∠ODC=0.75。 (1)求点D的坐标。
(2)求折痕CE所在直线的表达式。在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母abc ,…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格)。当明码对应的序号x为奇数时,密码对应的序号y=,当明码对应的序号x为偶数时,密码对应的序号y=+13,按下述规定,将明码“love”译成密码是 [ ] A.gawq
B.shxc
C.sdri
D.love如图,已知反比例函数y=的图象经过点A(1,-3),一次函数y = kx + b的图象经过点A与点C(0,-4),且与反比例函数的图象相交于另一点B(3,n)。
(1)试确定这两个函数的解析式;
(2)求△AOB的面积;
(3)根据图形直接写出反比例函数值大于一次函数值时自变量的取值范围。某工厂计划为汶川地震灾区生产A、B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套 A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3。
(1)有多少种生产方案?
(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用。(总费用=生产成本+运费)
(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由。某种形如长方体的2000毫升盒装果汁,其盒底面是边长为10cm的正方形。现从盒中倒出果汁,盒中剩余汁的体积y(毫升)与果汁下降高度x(cm)之间的函数关系如图所示(盒子的厚度不计)
(1)求出y与x的函数关系式,并写出自变量x的取值范围;
(2)若将满盒果汁倒出一部分,下降的高度为15cm,剩余的果汁还能够倒满每个容积为180毫升的3个纸杯吗?请计算说明。2008年北京奥运会的比赛门票已接受公众预订,下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格。 比赛项目 票价(元/场) 男篮 1000 足球 800 乒乓球 500 近年国际石油价格猛涨,中国也受其影响,某市为了降低运行成本,部分出租车进行了改装,改装后的出租车可以用液化气来代替汽油.假设一辆出租车日平均行程为300千米。
(1)使用汽油的出租车,假设每升汽油能行驶12千米.该地的汽油价格为5.12元/升,当行驶时间为t天时,所耗的汽油费用为p元,试写出p关于t的函数关系式;
(2)使用液化气的出租车,假设每千克液化气能行驶15~16千米,该地的液化气价格为6元/千克,当行驶时间为t天时,所耗的液化气费用为w元,试求w的取值范围(用t表示);
(3)若出租车要改装为使用液化气,每辆需配置成本为5000元的设备,根据近阶段汽油和液化气的价位,请在(1)、(2)的基础上,计算出最多几天就能收回改装设备的成本?已知一次函数y=kx+b图像与反比例函数y=的图像交于A、B两点,与x轴交于C点,且A、B两点的横坐标是方程x2+x-2=0的两根
(1)求一次函数的解析式;
(2)求C点坐标。在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码。有一种密码,将英文26个字母a,b,c ,…,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格)。当明码对应的序号x为奇数时,密码对应的序号;当明码对应的序号x为偶数时,密码对应的序号 y=+13按上述规定,将明码“love”译成密码是 字母 a b c d e f g h i j k l m 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 字母 n o p q r s t u v w x y z 序号 14 15 16 17 18 19 20 21 22 23 24 25 26 已知一次函数y=(1-2m)x+m-3 图像与y轴的交点位于y轴负半轴上,且函数值y随自变量x的增大而减小。
(1)求m的取值范围;
(2)又如果该一次函数的图像与坐标轴围成的三角形面积是2,求这个一次函数的解析式。如图,在平面直角坐标系中,Rt△OAB的直角边OA在x轴的正半轴上,点B在第象限,将△OAB绕点O按逆时针方向旋转至△OA"B",使点B的对应点B"落在y轴的正半轴上,已知OB=2,∠BOA=30°
(1)求点B和点A"的坐标;
(2)求经过点B和点B"的直线所对应的一次函数解析式,并判断点A是否在直线BB"上。某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件。若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数关系。(如图)
(1)求y与x的函数关系式;
(2)该店计划这次选购A、B两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A种文具每件可获利4元和B种文具每件可获利2元计算,,则该店这次有哪几种进货方案?
(3)若A种文具的零售价比B种文具的零售价高2元/件,求两种文具每天的销售利润W(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?如图,一次函数y= kx + b的图象与反比例函数图象交于A(-2,1)、B(1,n)两点。
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围。如图所示,在平面直角坐标系xoy中,M是X轴正半轴上一点,⊙M与X轴的正半轴交于A、B两点,A在B的左侧,且OA、OB的长是方程x2-12x+27=0的两根,ON是⊙M的切线,N为切点,N在第四象限。
(1)求⊙M的直径;
(2)求直线ON对应的函数关系式;
(3)在x轴上是否存在一点T,使△OTN是等腰三角形?若存在,请直接写出T的坐标;若不存在,请说明理由。在如图所示的直角坐标系中,O为原点,直线y= -x+m与x轴、y轴分别交于A、B两点,且点B的坐标为(0,8)
(1)求m的值;
(2)设直线OP与线段AB相交于P点,且,S△AOP/S△BOP=,试求点P的坐标。某公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:
(一)每位职工在年初需缴纳医疗公积金m元;
(二)职工个人当年治病花费的医疗费年底按下表的办法分段处理: